• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matrizes

Matrizes

Mensagempor serginho » Sex Dez 12, 2008 02:38

Alguem ajuda ?

1) Sejam X e Y matrizes de mesma ordem, determine a, a \in R para que X = Y.
X=
\begin{vmatrix}
   {a}^{2}-2 & -2a  \\ 
   4a & -2+{a}^{2} 
\end{vmatrix}Y = 
\begin{vmatrix}
   2 & 4  \\ 
   -8 & 2 
\end{vmatrix}
serginho
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Dez 12, 2008 02:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: Informática
Andamento: formado

Re: Matrizes

Mensagempor Gustavo_HSAL » Ter Dez 16, 2008 01:33

Olá, Serginho. Atenta em que, a partir da igualmente, construímos o seguinte sistema:

\[
\left\{ \begin{array}{l}
 a^2  - 2 = 2 \\ 
  - 2a = 4 \\ 
 4a =  - 8 \\ 
 \end{array} \right.
\]

A única solução que satisfaz as três equações ao mesmo tempo é \[
a =  - 2
\]. Atenta em que, pela primeira equação, teríamos \[
a =  \pm 2
\]. Entretanto, somente o valor negativo satisfaz o sistema.
Gustavo_HSAL
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Dez 16, 2008 00:55
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Matrizes

Mensagempor Molina » Ter Dez 16, 2008 14:24

É uma boa ideia de fazer por sistema. Mas a forma mais simples seria fazer igualando as posições das matrizes.
As posições que possuem o a elevado ao quadrado há duas possibilidades (+2 e -2), porém nas outras posições possuem o +2 é descartado, ficando como solução apenas o -2.

Bom estudo!
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.