por valeuleo » Ter Jun 21, 2011 21:50
Não estou conseguindo resolver essa daqui:

Calculei a derivada e obtive:

. Daqui em diante não consegui resolver. Podem me ajudar?
Grato
-
valeuleo
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Mar 23, 2011 14:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências da Computação
- Andamento: cursando
por valeuleo » Ter Jun 21, 2011 22:29
MarceloFantini escreveu:Tome cuidado, você errou ao derivar a função:


Onde esta função for positiva, a função original é crescente, onde ela for zero é um possível máximo ou mínimo, e onde for negativa ela será decrescente. Pense na interpretação geométrica disso: uma derivada representa o coeficiente angular da reta tangente naquele ponto. Positivo indica reta "para cima", crescendo, e negativo indica "para baixo", decrescendo.
Valeu. Realmente não tinha notado no errinho na derivação. Grato
-
valeuleo
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Mar 23, 2011 14:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências da Computação
- Andamento: cursando
por LuizAquino » Ter Jun 21, 2011 22:44
Se você não souber como continuar o exercício, eu recomendo que assista a
vídeo-aula "20. Cálculo I - Crescimento, Decrescimento e Concavidade do Gráfico de Funções".
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calcular intervalos de crescimento e decrescimento da função
por Eduardooitavo » Sáb Jun 09, 2012 18:06
- 1 Respostas
- 2433 Exibições
- Última mensagem por MarceloFantini

Sáb Jun 09, 2012 19:32
Cálculo: Limites, Derivadas e Integrais
-
- crescimento e decrescimento da função
por Ana Maria da Silva » Qua Out 02, 2013 10:18
- 1 Respostas
- 1071 Exibições
- Última mensagem por Bravim

Qui Out 03, 2013 05:32
Cálculo: Limites, Derivadas e Integrais
-
- crescimento e decrescimento
por joandro » Dom Abr 13, 2014 11:30
- 1 Respostas
- 1352 Exibições
- Última mensagem por alienante

Ter Abr 29, 2014 17:27
Cálculo: Limites, Derivadas e Integrais
-
- Intervalo de crescimento e decrescimento
por valeuleo » Qui Jun 23, 2011 12:02
- 4 Respostas
- 2676 Exibições
- Última mensagem por LuizAquino

Sáb Jun 25, 2011 16:50
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] crescimento e decrescimento
por fabriel » Ter Set 25, 2012 02:57
- 2 Respostas
- 1817 Exibições
- Última mensagem por fabriel

Ter Set 25, 2012 12:57
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.