se puderem me ajudar, aqui estão:
![\int_{}^{}\frac{\left(x+1 \right)}{\sqrt[2]{x}-1} \int_{}^{}\frac{\left(x+1 \right)}{\sqrt[2]{x}-1}](/latexrender/pictures/88e942f5a46f555a4b99a1cecf19103b.png)
![\int_{}^{}\frac{\left(1-\sqrt[2]{x} \right)}{1+\sqrt[2]{x}} \int_{}^{}\frac{\left(1-\sqrt[2]{x} \right)}{1+\sqrt[2]{x}}](/latexrender/pictures/ec52c70bd1ef534c811c6a3e83bd0694.png)
(tem que ser feitas por substituição)
tranco logo no início:
![u=\sqrt[2]{x}-1 u=\sqrt[2]{x}-1](/latexrender/pictures/2797c0818a97318dc282e12dd49d9faa.png)
![\int_{}^{}\frac{x+1}{2u\sqrt[2]{x}} \int_{}^{}\frac{x+1}{2u\sqrt[2]{x}}](/latexrender/pictures/41433ab6423071ffa9705c2ade8df2ef.png)
nao consigo eliminar o x para poder integrar!
se puderem me indicar o caminho...
obrigado,
pseytow
![\int_{}^{}\frac{\left(x+1 \right)}{\sqrt[2]{x}-1} \int_{}^{}\frac{\left(x+1 \right)}{\sqrt[2]{x}-1}](/latexrender/pictures/88e942f5a46f555a4b99a1cecf19103b.png)
![\int_{}^{}\frac{\left(1-\sqrt[2]{x} \right)}{1+\sqrt[2]{x}} \int_{}^{}\frac{\left(1-\sqrt[2]{x} \right)}{1+\sqrt[2]{x}}](/latexrender/pictures/ec52c70bd1ef534c811c6a3e83bd0694.png)
![u=\sqrt[2]{x}-1 u=\sqrt[2]{x}-1](/latexrender/pictures/2797c0818a97318dc282e12dd49d9faa.png)
![\int_{}^{}\frac{x+1}{2u\sqrt[2]{x}} \int_{}^{}\frac{x+1}{2u\sqrt[2]{x}}](/latexrender/pictures/41433ab6423071ffa9705c2ade8df2ef.png)


teremos:

![2\left[\int \frac{y^3-1}{y-1}dy+\int \frac{y+1}{y-1}dy\right]=2\left[\int \frac{(y-1)(y^2+y+1)}{(y-1)}dy+\int \frac{y+1}{y-1}dy\right]= 2\left[\int \frac{y^3-1}{y-1}dy+\int \frac{y+1}{y-1}dy\right]=2\left[\int \frac{(y-1)(y^2+y+1)}{(y-1)}dy+\int \frac{y+1}{y-1}dy\right]=](/latexrender/pictures/f9324182948bec29db8323c2dd8334f5.png)
![2\left[\int (y^2+y+1)dy+\int \frac{y}{y-1}dy +\int \frac{dy}{y-1}\right]= 2\left[\int (y^2+y+1)dy+\int \frac{y}{y-1}dy +\int \frac{dy}{y-1}\right]=](/latexrender/pictures/b4a9008205954de34259621e12498400.png)




e substituindo o valor de
teremos:

encontraremos 

teremos:


teremos:



e
tem-se que 

teremos:

Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)