• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Número de Conjuntos

Número de Conjuntos

Mensagempor gustavowelp » Dom Jun 19, 2011 12:00

Bom dia.

Estou com uma dúvida no enunciado desta questão:

O número de conjuntos X que satisfazem [1;2] \subset X \subset [1;2;3;4] é:

A resposta é 4, mas não entendi o enunciado.
Os números 1 e 2 estão contidos em X, ou seja, X tem esses elementos. Mas X estar contido em 1, 2, 3 e 4... É só para complicar? 3 e 4 não fazem parte de X?

Por isso que se faz {2}^{n} para sabermos o número de subconjuntos? E no caso ficaram só os números 1 e 2? Acho que é isso.

Obrigado
gustavowelp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 91
Registrado em: Sex Jun 25, 2010 20:40
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Número de Conjuntos

Mensagempor Molina » Dom Jun 19, 2011 15:19

Boa tarde.

Você deve estar confundindo a pergunta. Ele não quer saber quanto elementos há no conjunto X e sim, quantas possibilidades há para X.

Perceba que X será sempre formados pelos elementos 1 e 2. Agora temos que encontrar as outras opções para X. Perceba que todas abaixo satisfazem a condição inicial:

[1;2] \subset [1;2] \subset [1;2;3;4]

[1;2] \subset [1;2;3] \subset [1;2;3;4]

[1;2] \subset [1;2;4] \subset [1;2;3;4]

[1;2] \subset [1;2;3;4] \subset [1;2;3;4]

Ou seja, quatro opções.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}