![\sqrt[5]{{3}^{2x}} = {2.187}^{\frac{{35x}^{2}-1}{35}}
{\left({3}^{\frac{2}{3}} \right)}^{x} = 7*\left(\frac{{35x}^{2}-1}{35} \right)
\left(\frac{2}{5}x \right) = \frac{{245x}^{2}- 7}{35}
\left(\frac{2}{5}x \right) = \frac{{35x}^{2}- 1}{5}
{-35x}^{2}:5 + (\left(\frac{2}{5} \right)x + \frac{1}{5})
{-7x}^{2} + (\left(\frac{2}{5} \right)x + \frac{1}{5})
\left(2:5*2:5 -4*(-7)*(1:5)\right)
4:25 -4*(-7:5)
\left(\frac{4}{25} \right)+\left(\frac{28}{5} \right)
\sqrt{\frac{140}{25}}
\left(\frac{2\sqrt[]{35}}{5} \right)
\left(\frac{\left-(\frac{2}{5} \right)x + \left(\frac{2\sqrt[]{35}}{5} \right)}{-14}\right)
\left(\frac{\left-(\frac{2}{5} \right)x - \left(\frac{2\sqrt[]{35}}{5} \right)}{-14}\right) \sqrt[5]{{3}^{2x}} = {2.187}^{\frac{{35x}^{2}-1}{35}}
{\left({3}^{\frac{2}{3}} \right)}^{x} = 7*\left(\frac{{35x}^{2}-1}{35} \right)
\left(\frac{2}{5}x \right) = \frac{{245x}^{2}- 7}{35}
\left(\frac{2}{5}x \right) = \frac{{35x}^{2}- 1}{5}
{-35x}^{2}:5 + (\left(\frac{2}{5} \right)x + \frac{1}{5})
{-7x}^{2} + (\left(\frac{2}{5} \right)x + \frac{1}{5})
\left(2:5*2:5 -4*(-7)*(1:5)\right)
4:25 -4*(-7:5)
\left(\frac{4}{25} \right)+\left(\frac{28}{5} \right)
\sqrt{\frac{140}{25}}
\left(\frac{2\sqrt[]{35}}{5} \right)
\left(\frac{\left-(\frac{2}{5} \right)x + \left(\frac{2\sqrt[]{35}}{5} \right)}{-14}\right)
\left(\frac{\left-(\frac{2}{5} \right)x - \left(\frac{2\sqrt[]{35}}{5} \right)}{-14}\right)](/latexrender/pictures/31bbfed4344375ec3c65b39e30099bf1.png)
Alguém poderia me ajudar quanto essa resolução?
![\sqrt[5]{{3}^{2x}} = {2.187}^{\frac{{35x}^{2}-1}{35}}
{\left({3}^{\frac{2}{3}} \right)}^{x} = 7*\left(\frac{{35x}^{2}-1}{35} \right)
\left(\frac{2}{5}x \right) = \frac{{245x}^{2}- 7}{35}
\left(\frac{2}{5}x \right) = \frac{{35x}^{2}- 1}{5}
{-35x}^{2}:5 + (\left(\frac{2}{5} \right)x + \frac{1}{5})
{-7x}^{2} + (\left(\frac{2}{5} \right)x + \frac{1}{5})
\left(2:5*2:5 -4*(-7)*(1:5)\right)
4:25 -4*(-7:5)
\left(\frac{4}{25} \right)+\left(\frac{28}{5} \right)
\sqrt{\frac{140}{25}}
\left(\frac{2\sqrt[]{35}}{5} \right)
\left(\frac{\left-(\frac{2}{5} \right)x + \left(\frac{2\sqrt[]{35}}{5} \right)}{-14}\right)
\left(\frac{\left-(\frac{2}{5} \right)x - \left(\frac{2\sqrt[]{35}}{5} \right)}{-14}\right) \sqrt[5]{{3}^{2x}} = {2.187}^{\frac{{35x}^{2}-1}{35}}
{\left({3}^{\frac{2}{3}} \right)}^{x} = 7*\left(\frac{{35x}^{2}-1}{35} \right)
\left(\frac{2}{5}x \right) = \frac{{245x}^{2}- 7}{35}
\left(\frac{2}{5}x \right) = \frac{{35x}^{2}- 1}{5}
{-35x}^{2}:5 + (\left(\frac{2}{5} \right)x + \frac{1}{5})
{-7x}^{2} + (\left(\frac{2}{5} \right)x + \frac{1}{5})
\left(2:5*2:5 -4*(-7)*(1:5)\right)
4:25 -4*(-7:5)
\left(\frac{4}{25} \right)+\left(\frac{28}{5} \right)
\sqrt{\frac{140}{25}}
\left(\frac{2\sqrt[]{35}}{5} \right)
\left(\frac{\left-(\frac{2}{5} \right)x + \left(\frac{2\sqrt[]{35}}{5} \right)}{-14}\right)
\left(\frac{\left-(\frac{2}{5} \right)x - \left(\frac{2\sqrt[]{35}}{5} \right)}{-14}\right)](/latexrender/pictures/31bbfed4344375ec3c65b39e30099bf1.png)








, por exemplo, a equação ficaria
. Basicamente o que eu fiz foi multiplicar os dois lados por 5, eliminando o denominador em comum.



por 5 na penúltima linha.


pois
.

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)