• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Razão 33

Razão 33

Mensagempor Raphael Feitas10 » Sex Jun 10, 2011 22:33

Numa caixa existe bolas brancas e bolas pretas. Se tirarmos 16 bolas brancas, a razão entre as bolas brancas e as pretas será de 1 para 3. Em seguida, retiram-se 7 bolas pretas, restando na caixa a razão entre 1 bola branca para 2 bolas pretas. Determine quantas bolas de cada cor havia inicialmente na caixa.R: 23 brancas e 21 pretas.

Brother me ajuda mais umas vez conseguei fazer ate aqui mas ñ achei a resposta,me ajuda aew desde já agradecido...

16-x=\frac{1}{3} \Rightarrow 7-x=\frac{1x}{2y}
Raphael Feitas10
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 162
Registrado em: Ter Jan 04, 2011 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Razão 33

Mensagempor deangelo » Sáb Jun 11, 2011 02:04

Equacionando o problema, temos

b = número de bolas brancas
p = números de bolas pretas

Assim obtemos o sistema:

\frac{b-16}{p} = \frac{1}{3} \ (1) \\
\frac{b-16}{p-7} = \frac{1}{2} \ (2)

Resolvendo:

Isolando p em (1), temos

p = 3b - 48

Agora substituindo p em (2), temos

2b - 32 = p - 7 \Rightarrow 2b = p - 7 + 32 \Rightarrow 2b = 3b - 48 - 7 + 32 \Rightarrow b = 23

Agora que temos b, calculamos o valor de p

p = 3(b - 16)  \Rightarrow p = 3(23 - 16) \Rightarrow p = 3.7 \Rightarrow p =21

Portanto a quantidade inicial de bolas brancas é de 23, e de pretas 21.
"É por intuição que descobrimos, e pela lógica que provamos". [Henri Poincaré]
Avatar do usuário
deangelo
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Seg Out 11, 2010 03:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática-UFES
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}