• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ponto de Inflexão

Ponto de Inflexão

Mensagempor Kelvin Brayan » Ter Mai 24, 2011 16:21

O que é ponto de inflexão? esse ponto sempre coincide com o zero ou raiz da função?
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: Ponto de Inflexão

Mensagempor norberto » Ter Mai 24, 2011 17:19

Oi Kelvin !

Kelvin escreveu:O que é ponto de inflexão?


Pontos de inflexão, são os pontos em que a concavidade da curva muda.

Kelvin escreveu:esse ponto sempre coincide com o zero ou raiz da função?


Não. Na verdade, eles coincidem coma as raízes da segunda derivada da função.
Por exemplo :

f(x) = x^{3}

A primeira derivada é :

f^{'}(x) = 3x^{2}

E a segunda derivada é :

f^{''}(x) = 6x

É fácil ver que 0 é a raiz dessa equação.
Portanto 0 é um ponto de inflexão de f(x) = x^{3}

Abraços.
Editado pela última vez por norberto em Ter Mai 24, 2011 17:54, em um total de 1 vez.
norberto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Qua Mai 18, 2011 04:38
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Ponto de Inflexão

Mensagempor Kelvin Brayan » Ter Mai 24, 2011 17:29

Valeu!
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: Ponto de Inflexão

Mensagempor Fabio Cabral » Ter Jun 07, 2011 13:29

O ponto de inflexão é dado pela raíz da segunda derivada (f"(x)).
Ou seja, igualar f"(x) a 0.

Nesse caso, o ponto de inflexão não seria x=6?
" A Matemática não mente. Mente quem faz mau uso dela. " - Albert Einstein
Fabio Cabral
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 122
Registrado em: Qua Out 06, 2010 11:33
Localização: Brasília-DF
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)