• Anúncio Global
    Respostas
    Exibições
    Última mensagem

problema do cone

problema do cone

Mensagempor hevhoram » Sáb Jun 04, 2011 13:40

Para uma festa, foram confeccionados 40 chapéus de
papelão, na forma de cone retos, com raio da base
medindo 15cm e geratriz 25cm. Quanto foi usado de
papelão (considere somente a área lateral do cone)?
Dado: use a aproximação p ? 3,14.

eu fiz assim At= 3 x 3,14 x {15}^{2} depois multipliquei por 40 mas não deu o resultado. como proceder?
Resposta: 4,81m2
Figura1.jpg
Figura1.jpg (10.21 KiB) Exibido 1113 vezes
Avatar do usuário
hevhoram
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qua Jun 02, 2010 11:43
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: informática educacional
Andamento: formado

Re: problema do cone

Mensagempor claudinho » Sáb Jun 11, 2011 01:14

hevhoram, vc chutou longe..
não tem base o que vc tentou...

para resolver, precisaremos trabalhar com duas formulas tradicionaias sobre cincunferencia
(AREA)   S = \pi.{r}^{2} 

(Perimetro)   2p = 2.\pi.{r}

Sabendo disso, teremos varias etapas (perceba q estamos lidando com 02 circulos):

1- Calcular o perimetro do circulo menor (base do chapeu que term o raio = 15)
2- esse perimetro passará a ser, uma fração do perimetro do circulo maior (o chapeu propriamente dito, quando está planificado)
3- descobrirmos qual a razão entre os 02 perimetros
4- calcular a area total do circulo maior,
5- e multiplicar pela razão
6- multiplicar por 40 chapeus (e converter para m²)
01 (Perimetro do circ menor)
2p = 2.\pi.{r}
2p = 2.\pi.15
2p = 30.\pi cm²


02 (Perimetro do circ maior)
2p = 2.\pi.{r}
2p = 2.\pi.25
2p = 50.\pi cm²

03 A razão é de \frac{30}{50} ou \frac{3}{5} ou 0,6

04 Area Total do circulo maior
S = \pi.{r}^{2}
S = \pi.{25}^{2}
S = 625.\pi cm²

05 multiplicando pela razão, obtemos a resposta (para 01 chapéu)
\frac{3}{5} . 625.\pi cm²
S = 375.\pi cm²


06 para 40 chapéus:
40 . 375.\pi cm²

= 15000.\pi cm²
= 47100 cm²
= 4,71 m²
claudinho
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Jun 10, 2011 13:55
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59