• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prisma Hexagonal

Prisma Hexagonal

Mensagempor Laryssa Rafaella » Sáb Mai 28, 2011 22:04

01- Calcule o volume de um prisma regular hexagonal de altura igual a 8 cm, sabendo que a área total de sua superfície é o triplo da área lateral. Gab.: 4096\sqrt[]{3} cm³.
Resolução:
Por se tratar de um prisma hexagonal sua base é composta de 6 triângulos equiláteros. Dessa forma, a área lateral é 6 vezes a área de um retângulo (base x altura) resultando em 48b (6.b.8) e a área da base é \frac{3{l}^{2}\sqrt[]{3}}{2}.
Assim, é substituído tanto a área da base quanto a área lateral na fórmula da área total. Lembrando que a área total é igual 3 vezes a área lateral.
Atotal = Alateral + 2.Abase
3.48b = 48b + 2.\frac{3{l}^{2}\sqrt[]{3}}{2}
144b = 48b + \frac{6{l}^{2}\sqrt[]{3}}{2} -> simplificando fica \frac{3{l}^{2}\sqrt[]{3}}{1}
144b - 48b = \frac{3{l}^{2}\sqrt[]{3}}{1}
b = \frac{3{l}^{2}\sqrt[]{3}}{96}
b = \frac{{l}^{2}\sqrt[]{3}}{32}cm

Após encontrar o valor de b, substitui-se o valor de "b" na área lateral:
Alateral = 48b
Alateral = 48.\frac{{l}^{2}\sqrt[]{3}}{32}
Alateral = \frac{48{l}^{2}\sqrt[]{3}}{32} -> simplificando fica igual à...
Alateral = \frac{3{l}^{2}\sqrt[]{3}}{2} cm²
Isso mostra que a área lateral desse hexágono é igual a área da base do mesmo.

Para encontrar o valor de "l" iguala-se a área da base, à área lateral.
\frac{3{l}^{2}\sqrt[]{3}}{2} = \frac{3{l}^{2}\sqrt[]{3}}{2} -> simplifica 2 com 2 e 3 com 3.
l² = \sqrt[]{3}
l = \sqrt[]{\sqrt[]{3}} -> simplifica os radicais.
l = 3 cm

Agora substitui o valor de "l" na fórmula do volume:
V = Abase.h
V = \frac{3{l}^{2}\sqrt[]{3}}{2}.8
V = \frac{3.{3}^{2}\sqrt[]{3}}{2}.8
V = \frac{3.9\sqrt[]{3}}{2}.8
V = \frac{27\sqrt[]{3}}{2}.8
V = \frac{216\sqrt[]{3}}{2}
V = 108\sqrt[]{3} cm³

Já refiz várias vezes e sempre encontro esse valor. Não sei onde errei ou se o gabarito está errado. Preciso de ajuda com esse exercício, por favor!
Obrigada e parabéns pelo forúm!
Laryssa Rafaella Santos
Laryssa Rafaella
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Mai 28, 2011 16:00
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Prisma Hexagonal

Mensagempor carlosalesouza » Dom Mai 29, 2011 03:47

Vamos do zero...

A área lateral está correta... 48b...

Vamos verificar a área da base hexagonal...

A área de um hexágono é a metade do produto do apótema pelo perímetro... sendo o apótema a altura de qualquer dos triângulos equiláteros que o formam...

assim, sendo os triângulos equiláteros, o apótema os divide em dois triângulos retângulos, com hipotenusa igual ao dobro da base... então, o apótema é dado por:

\\
b^2=(\frac{b}{2})^2 + ap^2\\
ap^2=b^2-\frac{b^2}{4}\\
ap^2=\frac{4b^2-b^2}{4}\\
ap^2=\frac{3b^2}{4}\\
ap=\sqrt{\frac{3b^2}{4}}=\frac{b\sqrt 3}{2}

Então, sendo o perímetro igual a 6b, a área é:

\\
\frac{P\times ap}{2}\\
\frac{\not {6}b\cdot \frac{b\sqrt 3}{\not{2}}}{2}\\
\frac{3b^2\sqrt3}{2}

Agora, veja bem, a área total da superfície é a soma da área lateral com as duas bases hexagonais... como a área total é o triplo da área lateral e os dois hexágonos são iguais, logo, os hexágonos têm a mesma área que os seis retângulos da lateral....

Então:

\\
\frac{3b^2\sqrt 3}{2}=48b\\
3b^2\sqrt 3=96b\\
b^2\sqrt 3 = 32b\\
b^2\sqrt 3 - 32b = 0\\
b(b\sqrt 3 - 32) = 0

Quer dizer que b=0 (o que é falso) ou:

\\
b\sqrt 3 =32\\
b=\frac{32}{\sqrt 3}=\frac{32\sqrt 3}{3}

Sendo este o valor de b e sendo a área lateral igual a área da base, então a área da base, que é 48b será:

\\
A=\not{48} \cdot \frac{32\sqrt 3}{\not{3}}\\
A = 16\cdot 32 \sqrt 3 = 512\sqrt 3

Agora, para encontrar o volume, basta multiplicar a área da base pela altura:

\\
V = 8\cdot 512\sqrt 3 = 4096\sqrt 3


Ok?

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D