• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Proporção 52

Proporção 52

Mensagempor Raphael Feitas10 » Qui Mai 26, 2011 20:02

Calcule a e b na proporção \frac{a}{9}=\frac{b}{27}, sabendo-se que {2a}^{2}+{b}^{2}=44.R: 2 e 6

Brother me ajuda aew fiz ate aqui mas ñ conseguie achar o resultado no soube oq fazer com esse dois aew da equação...

\frac{44}{810}=\frac{{a}^{2}}{81}
Raphael Feitas10
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 162
Registrado em: Ter Jan 04, 2011 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando

Re: Proporção 52

Mensagempor FilipeCaceres » Qui Mai 26, 2011 20:11

Temos,
\frac{a}{9}=\frac{b}{27}\, \therefore b=3a

Assim temos,
{2a}^{2}+{b}^{2}=44
2a^2+9a^2=44
11a^2=44
a^2=4
a=\pm 2

Logo,
b=3a=3.(\pm 2)=\pm 6

Portanto,
(a,b)=(2,6),(-2,-6)

Espero que seja isso.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Proporção 52

Mensagempor Raphael Feitas10 » Qui Mai 26, 2011 22:45

FilipeCaceres escreveu:Temos,
\frac{a}{9}=\frac{b}{27}\, \therefore b=3a brother ñ entendie de onde saio esse 3

Assim temos,
{2a}^{2}+{b}^{2}=44
2a^2+9a^2=44 e esse 9 aqui me explica aew parceiro tou confuso aqui...

11a^2=44 des de já muito obrg por ter me ajudado...
a^2=4
a=\pm 2

Logo,
b=3a=3.(\pm 2)=\pm 6

Portanto,
(a,b)=(2,6),(-2,-6)



Espero que seja isso.
Raphael Feitas10
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 162
Registrado em: Ter Jan 04, 2011 20:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?