• Anúncio Global
    Respostas
    Exibições
    Última mensagem

potencia de i

potencia de i

Mensagempor zeramalho2004 » Dom Nov 02, 2008 16:42

Pessoal, estou estudando para o vestibular e cheguei numa conta que nao consigo resolver, a resposta é -5, eu sei que é simplificando os expoentes pois tem uma unidade de diferença, mas eles sao conjugados e reais opostos, como posso subtrair esses expoentes?

\frac{(2+i)^{101}.(2-i)^{50}}{(-2-i)^{100}.(i-2)^{49}}
zeramalho2004
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Nov 02, 2008 16:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: potencia de i

Mensagempor admin » Dom Nov 02, 2008 17:24

Olá zeramalho2004, boas-vindas!

O primeiro passo será utilizar esta propriedade de potências, sendo z \in \math{C} e m, n \in \math{N}:

z^{m+n} = z^m \cdot z^n


\frac{(2+i)^{101} \cdot (2-i)^{50}}{(-2-i)^{100} \cdot (i-2)^{49}} =
\frac{(2+i)\cdot (2+i)^{100} \cdot (2-i)\cdot (2-i)^{49}}{(-2-i)^{100} \cdot (i-2)^{49}} =
\cdots


Em seguida, aplique outras propriedades. Depois, coloque -1 em evidência em cada fator do denominador para resolver o problema das bases diferentes.

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: potencia de i

Mensagempor zeramalho2004 » Ter Nov 04, 2008 13:22

muito obrigado Fabio, agora sim consegui resolver o exercicio, abraçao

Mateus.
zeramalho2004
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Nov 02, 2008 16:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.