• Anúncio Global
    Respostas
    Exibições
    Última mensagem

potencia de i

potencia de i

Mensagempor zeramalho2004 » Dom Nov 02, 2008 16:42

Pessoal, estou estudando para o vestibular e cheguei numa conta que nao consigo resolver, a resposta é -5, eu sei que é simplificando os expoentes pois tem uma unidade de diferença, mas eles sao conjugados e reais opostos, como posso subtrair esses expoentes?

\frac{(2+i)^{101}.(2-i)^{50}}{(-2-i)^{100}.(i-2)^{49}}
zeramalho2004
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Nov 02, 2008 16:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: potencia de i

Mensagempor admin » Dom Nov 02, 2008 17:24

Olá zeramalho2004, boas-vindas!

O primeiro passo será utilizar esta propriedade de potências, sendo z \in \math{C} e m, n \in \math{N}:

z^{m+n} = z^m \cdot z^n


\frac{(2+i)^{101} \cdot (2-i)^{50}}{(-2-i)^{100} \cdot (i-2)^{49}} =
\frac{(2+i)\cdot (2+i)^{100} \cdot (2-i)\cdot (2-i)^{49}}{(-2-i)^{100} \cdot (i-2)^{49}} =
\cdots


Em seguida, aplique outras propriedades. Depois, coloque -1 em evidência em cada fator do denominador para resolver o problema das bases diferentes.

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: potencia de i

Mensagempor zeramalho2004 » Ter Nov 04, 2008 13:22

muito obrigado Fabio, agora sim consegui resolver o exercicio, abraçao

Mateus.
zeramalho2004
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Nov 02, 2008 16:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.