• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicio de 'Prove que...' guidorizzi.

Exercicio de 'Prove que...' guidorizzi.

Mensagempor TheoFerraz » Ter Mai 24, 2011 18:22

A questão é a seguinte:

Sejam f e g duas funçoes deriváveis em (a,b) tais que f '(x) < g '(x) para todo x em (a,b). Suponha que exista c em (a,b) tal que f(c)=g(c). Prove que f(x) < g(x) para x > c, e f(x) > g(x) para x < c.

O exercicio está na parte de intervalos de crescimento e descrescimento, concavidades, pontos de inflexão, maximos e mínimos, Teorema do val. medio, essas coisas, do guidorizzi.


Obrigado.
Atenciosamente, Theo ferraz
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Exercicio de 'Prove que...' guidorizzi.

Mensagempor LuizAquino » Ter Mai 24, 2011 20:47

Observação
Por uma das hipóteses do exercício temos que f e g são diferenciáveis em (a, b), o que significa que f e g são contínuas em (a, b).

Precisamos ainda considerar que f e g são contínuas em x = a e x = b, para que desse modo f e g sejam contínuas em [a, b].

Isso será necessário para podermos usar o Teorema do Valor Médio.

Dica
Divida o intervalo [a, b] em dois intervalos: [a, c] e [c, b].

Aplique o T. V. M. em ambos os intervalos e use a hipótese que f'(x) < g'(x) para todo x em (a, b).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)