• Anúncio Global
    Respostas
    Exibições
    Última mensagem

divisão de polinomios

divisão de polinomios

Mensagempor theSinister » Seg Mai 23, 2011 17:11

como simplificar: \frac{a}{a^2-b^2}-\frac{b}{b^2-a^2} eu sei que o resultado vai dar \frac{1}{a-b} , porém não consegui chegar nesse resultado help-me
theSinister
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Abr 23, 2011 18:36
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: divisão de polinomios

Mensagempor Molina » Seg Mai 23, 2011 20:27

Boa noite.

\frac{a}{a^2-b^2}-\frac{b}{b^2-a^2}

\frac{a(b^2-a^2) - b(a^2-b^2)}{(a^2-b^2)(b^2-a^2)}

\frac{a(b-a)(b+a) - b(a-b)(a+b)}{(a-b)(a+b)(b-a)(b+a)}

\frac{(a+b)[a(b-a) - b(a-b)]}{(a+b)^2(a-b)(b-a)}

\frac{a(b-a) - b(a-b)}{(a+b)(a-b)(b-a)}

\frac{ab-a^2 - ba+b^2}{(a+b)(a-b)(b-a)}

\frac{b^2 - a^2 }{(a+b)(a-b)(b-a)}

\frac{(b - a)(b+a)}{(a+b)(a-b)(b-a)}

\frac{1}{a-b}


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: divisão de polinomios

Mensagempor theSinister » Seg Mai 23, 2011 21:45

ainda não consegui entender.
Eu sei que em uma subtração de frações , tira-se o mmc dos denominadores ai ,divide embaixo e multiplica em cima , nesse caso para achar o mmc basta multiplicar os denominadores ficando: a²b²-a^4-b^4+b²a²,, me ajudem ae
theSinister
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Abr 23, 2011 18:36
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: divisão de polinomios

Mensagempor Molina » Seg Mai 23, 2011 21:54

Boa noite.

theSinister escreveu:ainda não consegui entender.
Eu sei que em uma subtração de frações , tira-se o mmc dos denominadores ai ,divide embaixo e multiplica em cima , nesse caso para achar o mmc basta multiplicar os denominadores ficando: a²b²-a^4-b^4+b²a²,, me ajudem ae


É isso mesmo, para tirar o mmc dos denominadores eu simplesmente os multipliquei, só que eu não resolvi o produto entre eles, e sim deixei na forma que estavam. Note isto que eu estou falando, quando fiz aqui:

Molina escreveu:\frac{a}{a^2-b^2}-\frac{b}{b^2-a^2}

\frac{a(b^2-a^2) - b(a^2-b^2)}{(a^2-b^2)(b^2-a^2)}


Qualquer dúvida, informe, que eu explico passo a passo.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: divisão de polinomios

Mensagempor theSinister » Seg Mai 23, 2011 22:11

bom se o mmc entre os denominadores é a²b²-a^4-b^4+b²a², eu deveria dividir por a-b² e multiplicar por a certo? depois dividir por b²-a² e multiplicar por b ,mas ainda não entendi pq q ficou a (b²-a²)-b(a²-b²)/ (a²-b²)(b²-a²)
theSinister
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Abr 23, 2011 18:36
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: divisão de polinomios

Mensagempor Molina » Seg Mai 23, 2011 22:30

theSinister escreveu:bom se o mmc entre os denominadores é a²b²-a^4-b^4+b²a², eu deveria dividir por a-b² e multiplicar por a certo? depois dividir por b²-a² e multiplicar por b ,mas ainda não entendi pq q ficou a (b²-a²)-b(a²-b²)/ (a²-b²)(b²-a²)

Sim, este valor que você está dizendo ser o mmc de fato é, porém você "abriu" o produto (a^2-b^2)(b^2-a^2) e eu não. Ambos representam o mesmo valor, porém, eu preferi deixar ele da forma que está e não da forma que você fez (fazendo a distributiva termo a termo). Esta opção que eu fiz em deixar ele da forma fatorada (a^2-b^2)(b^2-a^2) foi uma das opções que achei melhor para chegar no resultado.

Perceba que:

a^2b^2-a^4-b^4+b^2a^2=(a^2-b^2)(b^2-a^2)


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: divisão de polinomios

Mensagempor theSinister » Seg Mai 23, 2011 22:34

brigadão cara , agora eu entendi vlw , o resto ta d boa .
theSinister
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Abr 23, 2011 18:36
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D