• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto Vetorial

Produto Vetorial

Mensagempor ARCS » Sex Mai 20, 2011 08:59

Estou com dificuldades neste caso. Já fiz diversos exercícios parecidos com este, mas este envolve somas vetoriais. Grato pela ajuda!

Sabendo que |{u}^{\rightarrow}|=6, |{v}^{\rightarrow}|=4 e 30º o ângulo formado entre u e v.

Calcular a área do paralelogramo determinado por u+v e u-v.
ARCS
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Qui Out 28, 2010 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Produto Vetorial

Mensagempor LuizAquino » Sex Mai 20, 2011 10:25

Dicas

Dados dois vetores \vec{a} e \vec{b}, temos que são válidas as afirmações abaixo.

(i) A área A do paralelogramo determinado por esses vetores, sendo \theta o ângulo formado entre eles, é dada por A = ||\vec{a}||\,||\vec{b}||\,\textrm{sen}\,\theta .

(ii) ||\vec{a} \pm {b}||^2 = ||\vec{a}||^2 \pm 2\left(\vec{a}\cdot\vec{b}\right) + ||\vec{b}||^2

(iii) \cos \theta = \frac{\vec{a}\cdot\vec{b}}{||\vec{a}||||\vec{b}||}, sendo \theta o ângulo formado por esses vetores (não nulos).

(iv) \left(\vec{a} + \vec{b}\right)\cdot \left(\vec{a} - \vec{b}\right) = ||\vec{a}||^2 - ||\vec{b}||^2
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.