por -civil- » Qui Mai 19, 2011 10:26
Guidorizzi - pg. 160 - Exercício 9, letra (h)
Calcule

onde

é igual a:

O gabarito da questão é:
![senx[2x-1]+cosx[x^2+1] senx[2x-1]+cosx[x^2+1]](/latexrender/pictures/1e2183019282ff67e313b3ef242d4091.png)
Mas o resultado que eu obtive foi
![(-senx)[(x^2+1)senx]+cosx[(x^2+1)^\prime\)senx+(x^2+1)cosx (-senx)[(x^2+1)senx]+cosx[(x^2+1)^\prime\)senx+(x^2+1)cosx](/latexrender/pictures/5b9c4c7987285e918a90609594f58148.png)
O que eu estou fazendo de errado?
-
-civil-
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Sex Abr 22, 2011 12:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por LuizAquino » Qui Mai 19, 2011 10:38
O seu erro está na aplicação das regras operatórias das derivadas.
Note que se g(x) = cos x, h(x) = x² + 1 e j(x) = sen x, então temos que f(x) = g(x) + h(x)j(x). Portanto, temos que:
f'(x) = [g(x) + h(x)j(x)]' = g'(x) + [h(x)j(x)]' = g'(x) + h'(x)j(x) + h(x)j'(x).
Aplicando corretamente a derivada e em seguida colocando os termos comuns em evidência, você obterá a resposta que consta no gabarito.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por -civil- » Seg Mai 23, 2011 00:24
Obrigada pela ajuda, eu estava usando regra errada.
-
-civil-
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Sex Abr 22, 2011 12:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Exercicio de 'Prove que...' guidorizzi.
por TheoFerraz » Ter Mai 24, 2011 18:22
- 1 Respostas
- 1843 Exibições
- Última mensagem por LuizAquino

Ter Mai 24, 2011 20:47
Cálculo: Limites, Derivadas e Integrais
-
- Guidorizzi - Cap 1 - Ex 17
por kryzay » Qua Jul 27, 2011 09:20
- 8 Respostas
- 7480 Exibições
- Última mensagem por Buda

Sáb Out 29, 2011 23:04
Funções
-
- Guidorizzi
por manuoliveira » Qua Set 12, 2012 21:09
- 1 Respostas
- 5648 Exibições
- Última mensagem por MarceloFantini

Qua Set 12, 2012 22:04
Cálculo
-
- Diferenciabilidade [Guidorizzi]
por PScotth » Sáb Jun 23, 2018 09:57
- 0 Respostas
- 2547 Exibições
- Última mensagem por PScotth

Sáb Jun 23, 2018 09:57
Cálculo: Limites, Derivadas e Integrais
-
- [Exercício de derivadas]
por elizandro » Sáb Out 22, 2011 22:56
- 6 Respostas
- 3459 Exibições
- Última mensagem por LuizAquino

Seg Out 24, 2011 11:38
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.