• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prisma

Prisma

Mensagempor MateusSobreira » Ter Mai 17, 2011 19:37

Um cubo possui diagonal da face com \sqrt[]{32}cm, medida igual à da altura de um prisma regular de base triangular com aresta da base medindo 4cm. Encontre a área total de cada poliedro.

I: Já encontrei que ATcubo = 96cm²
II: Já encontrei que a ABtriângulo = 4.\sqrt[]{3}

A bronca que estou é pra encontrar a área lateral do prisma triangular regular.

Gabarito: 8.(\sqrt[]{3} + 6.\sqrt[]{2})cm
MateusSobreira
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Abr 14, 2011 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso:
Andamento: cursando

Re: Prisma

Mensagempor norberto » Qua Mai 18, 2011 06:16

Ok Mateus, pelo jeito você já resolveu quase tudo.

Vamos passar direto pro prisma. Você deve atentar que este prisma em questão possui 5 faces, sendo :

2 triangulares correspondentes à base e ao topo
3 faces laterais retangulares.

Se chamarmos cada face triangular de At e cada face retangular de Ar, teremos que a soma das
áreas de todas as 5 faces será :

(1) S = 2At + 3Ar

Ora, a área de cada face triangular é :

{A}_{t} = {4} \sqrt[]{3}

Quanto a área retangular, note que o enunciado já dá as medidas dos lados.
O lado menor mede 4 cm e o maior \sqrt[]{32} (ou melhor, {4} \sqrt[]{2} )

Logo :

{A}_{r} = {4} * {4} \sqrt[]{2} = 16 \sqrt[]{2}


Substituindo o valor de At e Ar em (1), teremos :

S = 2 * 4 \sqrt[]{3} + 3 *16 \sqrt[]{2}

Agora é só colocar 8 em evidência :

S = 8 ( \sqrt[]{3} + 6  \sqrt[]{2} )
norberto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Qua Mai 18, 2011 04:38
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: