• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prisma

Prisma

Mensagempor MateusSobreira » Ter Mai 17, 2011 19:37

Um cubo possui diagonal da face com \sqrt[]{32}cm, medida igual à da altura de um prisma regular de base triangular com aresta da base medindo 4cm. Encontre a área total de cada poliedro.

I: Já encontrei que ATcubo = 96cm²
II: Já encontrei que a ABtriângulo = 4.\sqrt[]{3}

A bronca que estou é pra encontrar a área lateral do prisma triangular regular.

Gabarito: 8.(\sqrt[]{3} + 6.\sqrt[]{2})cm
MateusSobreira
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Abr 14, 2011 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso:
Andamento: cursando

Re: Prisma

Mensagempor norberto » Qua Mai 18, 2011 06:16

Ok Mateus, pelo jeito você já resolveu quase tudo.

Vamos passar direto pro prisma. Você deve atentar que este prisma em questão possui 5 faces, sendo :

2 triangulares correspondentes à base e ao topo
3 faces laterais retangulares.

Se chamarmos cada face triangular de At e cada face retangular de Ar, teremos que a soma das
áreas de todas as 5 faces será :

(1) S = 2At + 3Ar

Ora, a área de cada face triangular é :

{A}_{t} = {4} \sqrt[]{3}

Quanto a área retangular, note que o enunciado já dá as medidas dos lados.
O lado menor mede 4 cm e o maior \sqrt[]{32} (ou melhor, {4} \sqrt[]{2} )

Logo :

{A}_{r} = {4} * {4} \sqrt[]{2} = 16 \sqrt[]{2}


Substituindo o valor de At e Ar em (1), teremos :

S = 2 * 4 \sqrt[]{3} + 3 *16 \sqrt[]{2}

Agora é só colocar 8 em evidência :

S = 8 ( \sqrt[]{3} + 6  \sqrt[]{2} )
norberto
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Qua Mai 18, 2011 04:38
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59