• Anúncio Global
    Respostas
    Exibições
    Última mensagem

As três sequências

As três sequências

Mensagempor joaofonseca » Ter Mai 17, 2011 17:57

Hoje deparei-me com um problema que não consegui decifrar a solução.

Dadas as seguintes sequências:

(a_{n})=n

(b_{n})=\frac{4}{n}

(c_{n})=(-1)^{n}\cdot n

Calcule a ordem k para a qual os termos das diferentes sequências são iguais.
Pelo que entendi tem de se achar uma ordem k tal que (a_{k})=(b_{k})=(c_{k}).

Eu consegui resolver graficamente, com a ajuda da máquina. Mas como faço de forma algébrica?
Obrigado.
Editado pela última vez por joaofonseca em Ter Mai 17, 2011 18:35, em um total de 1 vez.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: As três sequências

Mensagempor FilipeCaceres » Ter Mai 17, 2011 18:35

Ao invés de (a_{k})=(b_{k})=(c_{n}) não seria (a_{k})=(b_{k})=(c_{k})?

Eu faria assim, caso fosse conforme descrito abaixo
(a_{k})=(b_{k})=(c_{k})

k=\frac{4}{k}=(-1)^k.k\, ;para\,k\neq 0

k^2=4

Então temos que
k=\pm 2

:y:
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: As três sequências

Mensagempor joaofonseca » Ter Mai 17, 2011 18:44

Já corrigi o erro.

FilipeCaceres escreveu:k=\frac{4}{k}=(-1)^{k}\cdot k


Como passas deste conjunto de igualdades para o resultado final?

Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: As três sequências

Mensagempor FilipeCaceres » Ter Mai 17, 2011 18:51

Se a_n=n então a_k=k, similarmente se faz para o resto.
Tendo a igualdade é só substituir os valores.Seja,
(a_{k})=(b_{k})=(c_{k})

Então,
k=\frac{4}{k}=(-1)^k.k\, ;para\,k\neq 0

Pegando a primeira igualdade temos,
k=\frac{4}{k}\, ;para\,k\neq 0

Logo,
k^2=4

Portanto,
k=\pm 2

Observe que ambos valores (+2,-2) também servem para a segunda igualdade e desta forma temos como solução os dois,ou seja.
k=\pm 2

Compreendeu?

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: As três sequências

Mensagempor joaofonseca » Ter Mai 17, 2011 19:12

Então é como se fosse um sistema linear de três equações com 2 incógnitas!


Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: As três sequências

Mensagempor MarceloFantini » Ter Mai 17, 2011 19:33

Provavelmente k é natural, então a única resposta válida é k=2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: