por andersontricordiano » Sex Mai 13, 2011 17:20
Na figura temos os gráficos das funções f e g . Se f(x)=2x², então g(3) vale:

- f e g.gif (3.17 KiB) Exibido 16917 vezes
-
andersontricordiano
- Colaborador Voluntário

-
- Mensagens: 192
- Registrado em: Sex Mar 04, 2011 23:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por carlosalesouza » Sex Mai 13, 2011 20:30
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
por MarceloFantini » Sáb Mai 14, 2011 01:53
Matriz é apelar. Nota-se que

é uma reta, logo

, com a e b a determinar. Como

. Temos também que

. Assim,

e portanto

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por carlosalesouza » Sáb Mai 14, 2011 23:19
Certamente...
Mostrei pela matriz pq, na verdade, é um modo de encontrar a equação em qualquer circunstância...
Quando é pra mim, só uso matriz se nao tiver outro jeito... eu encho tres paginas de calculo pra nao fazer uma matriz... uhauhuaahu
Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
por MarceloFantini » Sáb Mai 14, 2011 23:22
Não conheço esse método pela matriz, e matrizes geralmente dão trabalho.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por carlosalesouza » Dom Mai 15, 2011 21:28
Concordo... rs
Mas, apesar de matriz ser trabalhoso, pra equação da reta é uma matriz pequena... eu prefiro o método da substituição.... mas, pra fazer por matriz, tendo ponto A(xa,ya) e B(xb,yb), voce monta:

Sai bonitinha a equação da reta.... no formato ax+by+c...
Muita gente subvaloriza as matrizes... eu mesmo fiz isso durante muito tempo... e continuo não usando esse método pra praticamente nada.... entretanto, é um algoritmo muito eficiente, desde que se entenda o porque de cada valor que comporá a matriz e teremos o resultado de forma fácil... não necessariamente simples, mas fácil.... como Briot-Ruffini
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
por MarceloFantini » Dom Mai 15, 2011 21:33
Matrizes são extremamente potentes e poderosas, só que os contextos em que elas realmente facilitam não são aprendidas no ensino médio, e fica algo solto: você aprende uma nova estrutura forte sem saber onde usar ou pra que serve, e para os problemas mais simples do ensino médio elas são desnecessárias, pois é usar um canhão pra matar uma formiga.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por carlosalesouza » Dom Mai 15, 2011 21:46
Assino embaixo!!! hahahahah
Encerrou o assunto... rs
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
-
carlosalesouza
- Colaborador Voluntário

-
- Mensagens: 103
- Registrado em: Sex Abr 29, 2011 17:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática -LIC
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite Função Exponencial] Qual o valor?
por Ronaldobb » Qui Nov 01, 2012 10:21
- 1 Respostas
- 1668 Exibições
- Última mensagem por young_jedi

Qui Nov 01, 2012 13:51
Cálculo: Limites, Derivadas e Integrais
-
- Qual o valor de K?
por Talvane Ramos » Ter Mar 23, 2010 13:12
- 2 Respostas
- 4333 Exibições
- Última mensagem por joao_pimentel

Qua Dez 14, 2011 20:21
Sistemas de Equações
-
- Qual o valor de (-1)^2/6?
por Abelardo » Ter Abr 12, 2011 23:55
- 28 Respostas
- 14596 Exibições
- Última mensagem por MarceloFantini

Ter Fev 14, 2012 16:26
Álgebra Elementar
-
- Qual é o valor de m
por andersontricordiano » Ter Mai 10, 2011 21:58
- 2 Respostas
- 1853 Exibições
- Última mensagem por DanielRJ

Ter Mai 10, 2011 22:32
Funções
-
- qual é o valor de x na equação:
por aninha1701 » Qui Mar 12, 2009 11:56
- 2 Respostas
- 7163 Exibições
- Última mensagem por Molina

Qui Mar 12, 2009 17:38
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.