• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação de segundo grau

Equação de segundo grau

Mensagempor maria cleide » Seg Mai 09, 2011 23:46

Sendo a e b as raízes da equação x^2-8x+1=0, qual o valor da expressão \dfrac{1}{a^3}+\dfrac{1}{b^3} ?
Apliquei a fórmula de Bhaskara: \dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

\dfrac{8\pm\sqrt{64-4}}{2}

\dfrac{8\pm7,75}{2}

\dfrac{8+7,75}{2}=7,875

\dfrac{8-7,75}{2}=0,125

Mas não consegui desenvolver isso.
maria cleide
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Dom Mai 08, 2011 12:57
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: Equação de segundo grau

Mensagempor MarceloFantini » Ter Mai 10, 2011 00:30

Temos que a+b=8 e ab=1. Considere \left( \frac{1}{a} + \frac{1}{b} \right)^3 = \frac{1}{a^3} + \frac{3}{a^2b} + \frac{3}{ab^2} + \frac{1}{b^3} = \frac{(a+b)^3}{(ab)^3} = 512. Note que se ab=1, então a^2b = a e ab^2 = b. Então:

3 \cdot \left( \frac{1}{a^2b} + \frac{1}{ab^2} \right) = 3 \cdot \left( \frac{1}{a} + \frac{1}{b} \right) = 3 \cdot \frac{a+b}{ab} = 24.

Finalizando: \frac{1}{a^3} + \frac{1}{b^3} = 512 - 24 = 40.

P.S.: Fui mais rápido!
Editado pela última vez por MarceloFantini em Ter Mai 10, 2011 00:35, em um total de 1 vez.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação de segundo grau

Mensagempor FilipeCaceres » Ter Mai 10, 2011 00:31

x^2-8x+1=0

Logo,
a+b=8
a.b=1

Então,
\frac{1}{a}+\frac{1}{b}=\frac{a+b}{a.b}=\frac{8}{1}=8

Sabendo que,
(x+y)^3=x^3+y^3+3xy(x+y)

Temos,
\left(\frac{1}{a}+\frac{1}{b}\right)^3=\frac{1}{a^3}+\frac{1}{b^3}+3.\frac{1}{a}.\frac{1}{b}\left(\frac{1}{a}+\frac{1}{b}\right)

8^3=\frac{1}{a^3}+\frac{1}{b^3}+3.1.8

\frac{1}{a^3}+\frac{1}{b^3}=8^3-3.8

\frac{1}{a^3}+\frac{1}{b^3}=512-24

Portanto,
\frac{1}{a^3}+\frac{1}{b^3}=488

Ps.: E fez errado :-D
Que bom que tem edit,rsrsrs
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Equação de segundo grau

Mensagempor FilipeCaceres » Ter Mai 10, 2011 00:43

Sempre 1 minuto!!!
Já não é a primeiro vez,rsrsrsr
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?