• Anúncio Global
    Respostas
    Exibições
    Última mensagem

luzes de uma torre

Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.

luzes de uma torre

Mensagempor junior_gyn » Seg Mai 09, 2011 14:12

boa tarde!
por favor me ajude

No alto de uma torre de uma emissora de televisão duas luzes "piscam" com frequências diferentes. A primeira "pisca" 15 vezes por minuto e a segunda "pisca" 10 vezes por minuto. Se num certo instante as luzes piscam simultaneamente, após quantos segundos elas voltarão a piscar simultaneamente?
a)12
b)10
c)20
d)15
e)30
junior_gyn
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Dom Abr 24, 2011 15:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: luzes de uma torre

Mensagempor Pedro123 » Seg Mai 09, 2011 16:25

júnior, seguinte, minha resposta seria letra A, pois veja que se a 1ª luz pisca 15 vezes por minuto, isso significa que ela pisca 1 vez a cada 4 segundos, e se a 2ª luz pisca 10 vezes por minutos, ela pisca 1 vez a cada 6 segundos.

Para que as duas luzes pisquem simultaneamente, deve haver um intervalo de tempo, tal que esse intevalo seja multiplo comum de 4 e 6 ao mesmo tempo, logo, para achar o intervalo de tempo, basta fazer o MMC entre 4 e 6, que é 12

Portanto, a cada 12 segundos, as lampadas piscam simultaneamente.

abraçoss
Pedro123
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qui Jun 10, 2010 22:46
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica - 1° Período
Andamento: cursando


Voltar para Desafios Médios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.