por maria cleide » Dom Mai 08, 2011 17:14
Simplificando a expressão

, obtemos qual resultado?
Consigui resolver dando valores a x, y e z:
Sendo:

respectivamente e obtive como resultado

que é o mesmo que:

Desenvolvi assim:

-
maria cleide
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Dom Mai 08, 2011 12:57
- Formação Escolar: ENSINO FUNDAMENTAL I
- Andamento: cursando
por Molina » Dom Mai 08, 2011 17:49
Boa tarde, Maria.
Lembre-se que:

e que

Com isso temos que:

Agora precisamos lembrar a propriedade que trata de diferença de quadrados:

![\frac{(x+y)^2-z^2}{x^2-(y-z)^2}=\frac{[(x+y)-z][(x+y)+z]}{[x-(y-z)][x+(y-z)]}=\frac{x+y+z}{x-y+z} \frac{(x+y)^2-z^2}{x^2-(y-z)^2}=\frac{[(x+y)-z][(x+y)+z]}{[x-(y-z)][x+(y-z)]}=\frac{x+y+z}{x-y+z}](/latexrender/pictures/2e672ab5637cb571a63dbd44cd614f17.png)

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Simplificação de expressão
por Cleyson007 » Qui Jan 14, 2010 22:13
- 3 Respostas
- 13050 Exibições
- Última mensagem por MarceloFantini

Sáb Jan 16, 2010 19:12
Estatística
-
- Simplificação de expressão.
por Sobreira » Qui Ago 22, 2013 01:53
- 2 Respostas
- 1358 Exibições
- Última mensagem por Sobreira

Qui Ago 22, 2013 18:12
Aritmética
-
- Simplificação(UNIFOR)-A expressão
por wgf » Seg Mai 27, 2013 20:26
- 4 Respostas
- 9171 Exibições
- Última mensagem por DanielFerreira

Ter Mai 01, 2018 22:54
Álgebra Elementar
-
- Regras de simplificação de expressão
por xdleoskk8 » Sáb Fev 15, 2014 12:29
- 3 Respostas
- 3389 Exibições
- Última mensagem por DanielFerreira

Sáb Fev 15, 2014 14:17
Equações
-
- simplificação de expressão entre conjuntos
por jojo » Ter Abr 06, 2010 16:49
- 1 Respostas
- 3910 Exibições
- Última mensagem por Lucio Carvalho

Ter Abr 06, 2010 21:26
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.