por rubenesantos » Seg Mai 02, 2011 22:38
Olá, amigos, boa noite. Sou novo no fórum e esta é minha primeira postagem.
Pois então,
Resolvendo uma lista de exercícios, me deparei com a seguinte questão:

Já resolvi outras questões desse tipo mas essa está quebrando a minha cabeça a semanas.
Eu divido o polinômio pelo outro, já que ambos tem o mesmo grau e resta a integral

Até aí eu acho que estou indo certo, mas a partir daí eu não consigo decompor esses polinômios e quando consigo sempre chego num resultado diferente do resultado da lista que é:
![x/4 - ln\left|x\right| + 1/16\left[9ln\left|2x-1\right| + 7ln\left|2x+1 \right| \right] + C x/4 - ln\left|x\right| + 1/16\left[9ln\left|2x-1\right| + 7ln\left|2x+1 \right| \right] + C](/latexrender/pictures/cbf5a3403fb012ac635cf9b826ad55c0.png)
Quem puder me ajudar, desde já agradeço!
Abraço! =D
-
rubenesantos
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Seg Mai 02, 2011 22:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Seg Mai 02, 2011 22:58
Note que

. Ou seja, temos que

.
Portanto, você precisa resolver a integral:

Agora, aplique frações parciais na segunda e na terceira integral. Além disso, perceba que

e que

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Estou com dificuldade para resolver esta integral
por Paulo Perez » Qui Out 03, 2013 12:22
- 2 Respostas
- 3932 Exibições
- Última mensagem por Paulo Perez

Sex Out 04, 2013 16:32
Cálculo: Limites, Derivadas e Integrais
-
- Dificuldade em resolver o exercicio nº 2
por Catriane Moreira » Sáb Nov 20, 2010 23:01
- 1 Respostas
- 2000 Exibições
- Última mensagem por alexandre32100

Seg Nov 22, 2010 14:42
Matemática Financeira
-
- dificuldade em resolver matriz inversa
por oliveiracld » Qua Mar 09, 2011 00:38
- 4 Respostas
- 3605 Exibições
- Última mensagem por LuizAquino

Qua Mar 09, 2011 20:19
Matrizes e Determinantes
-
- [Funções] dificuldade para resolver
por tiaguito » Seg Out 22, 2012 17:01
- 1 Respostas
- 1679 Exibições
- Última mensagem por Russman

Seg Out 22, 2012 18:35
Funções
-
- Dificuldade para resolver esse sistema.
por 380625 » Sáb Ago 20, 2011 16:08
- 1 Respostas
- 5673 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 00:32
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.