• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dificuldade ao resolver uma Integral Racinal

Dificuldade ao resolver uma Integral Racinal

Mensagempor rubenesantos » Seg Mai 02, 2011 22:38

Olá, amigos, boa noite. Sou novo no fórum e esta é minha primeira postagem.
Pois então,

Resolvendo uma lista de exercícios, me deparei com a seguinte questão: \int_{}(x^3+1)/(4x^3-x)dx{}

Já resolvi outras questões desse tipo mas essa está quebrando a minha cabeça a semanas.

Eu divido o polinômio pelo outro, já que ambos tem o mesmo grau e resta a integral x/4 \int_{}dx/(4x^3-x){} + 1/4 \int_{}xdx/4x^3-x{}

Até aí eu acho que estou indo certo, mas a partir daí eu não consigo decompor esses polinômios e quando consigo sempre chego num resultado diferente do resultado da lista que é:
x/4 - ln\left|x\right| + 1/16\left[9ln\left|2x-1\right| + 7ln\left|2x+1 \right| \right] + C

Quem puder me ajudar, desde já agradeço!
Abraço! =D
rubenesantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Mai 02, 2011 22:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Dificuldade ao resolver uma Integral Racinal

Mensagempor LuizAquino » Seg Mai 02, 2011 22:58

Note que x^3 + 1 = \frac{1}{4}(4x^3 - x) + \frac{1}{4}x + 1. Ou seja, temos que \frac{x^3 + 1}{4x^3 - x} = \frac{1}{4} + \frac{1}{4(4x^2-1)} + \frac{1}{4x^3-x} .

Portanto, você precisa resolver a integral:
\int \frac{x^3+1}{4x^3-x}dx = \int \frac{1}{4}\, dx + \frac{1}{4}\int\frac{1}{4x^2-1}\,dx + \int\frac{1}{4x^3-x}\,dx

Agora, aplique frações parciais na segunda e na terceira integral. Além disso, perceba que 4x^2-1 = (2x-1)(2x+1) e que 4x^3-x = x(2x-1)(2x+1).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}