• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Pode me ajudar a desenvolver o restante??

Pode me ajudar a desenvolver o restante??

Mensagempor Thais_silva » Qui Abr 28, 2011 10:35

Resolva, em R, a seguinte questão: 2^{x^2-x-16}=16


2^{x^2-x-16}=16
2^{x^2-x-16}=2^4
x²-x-16=4
x²-x-16-4=0
x²-x-12=0

a=1, b=-1, c=-12

\Delta=b^2-4ac
\Delta=(-1)^2-4.1.(-12)
\Delta=(-1)^2-4.(-12)
\Delta=-5.(-12)
\Delta=-60

x= \frac{-b\pm\sqrt[2]{\Delta}}{2a}
x=\frac{1\pm\sqrt[2]{60}}{2.1}
x=\frac{1\pm\sqrt[2]{60}}{2}
{x}_{1}=\frac{1+\sqrt[2]{60}}{2} = \frac{1+7,7}{2} = \frac{8,7}{2} = 4,35
{x}_{2}=\frac{1-\sqrt[2]{60}}{2} = \frac{1-7,7}{2} = \frac{6,7}{2} = 3,35


OBS: O resto eu não consegui fazer, podem me ajudar??
Thais_silva
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 28, 2011 09:25
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Pode me ajudar a desenvolver o restante??

Mensagempor Abelardo » Qui Abr 28, 2011 11:05

2^{x^2-x-16}=2^4

{2}^{{x}^{2}}. 2^{-x} .2^{-16} = 2^4

{2}^{{x}^{2}}. 2^{-x} = \frac{2^4}{2^{-16}}

{2}^{{x}^{2}}. 2^{-x} = 2^{20}

x^2 - x = 20

x(x -1)= 5*4 (Isolei x no primeiro membro e fatorei 20)

Perceba que x é igual a 5. Testei esse valor na expressão original e bateu o resultado. ''Pode'' haver outro valor? Não sei, mas se houver cinco é um deles. Você tem o gabarito?

Ps: Espero que sirva de subsídio para alguém terminar caso haja outros valores.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Pode me ajudar a desenvolver o restante??

Mensagempor FilipeCaceres » Qui Abr 28, 2011 11:18

Observe que você errou nesta parte
x^2-x-16-4=0
x^2-x-12=0

Correto
x^2-x-20=0

Portanto,
x_1=-4
x_2=5

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?