• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Aff... MAIS DÙVIDAS - UFMG e FUVEST

Aff... MAIS DÙVIDAS - UFMG e FUVEST

Mensagempor Kelvin Brayan » Seg Abr 25, 2011 11:43

Olá amigos, ultimamente, eu tenho resolvido muitos exercícios com problemas envolvendo divisibilidade, MDC e MMC. E eu estou com mais uma dúvida, vejam:

(UFMG) Considerem-se todas as divisões de números inteiros e positivos por 17, cujo resto é igual ao quadrado do quociente. A soma dos quocientes dessas divisões é
A) 10
B) 17
C) 17²
D) 1+2+...+17
E)1²+2²+...+17²

(FUVEST) Sabendo que os anos bissextos são os múltiplos de 4, e que o primeiro dia de 2007 foi segunda-feira, o próximo ano a começar em uma segunda-feira será quando?

Só sei que anos bissextos são 2000, 2004, 2008, 2012, 2016, 2020, ... - anos de Olimpíadas !

Eu até pensei numa forma de fazer, mas sei que será muito demorado e provavelmente há uma maneira mais fácil de resolver esse problema, principalmente porque essa questão é de vestibular e como todo mundo sabe : no vestibular você não tem muito tempo pra ficar pensando...


Obrigado !
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: Aff... MAIS DÙVIDAS - UFMG e FUVEST

Mensagempor LuizAquino » Seg Abr 25, 2011 20:24

Dicas

(UFMG) Considerem-se todas as divisões de números inteiros e positivos por 17, cujo resto é igual ao quadrado do quociente. A soma dos quocientes dessas divisões é


Se o número inteiro a for dividido pelo número inteiro d, resultando o quociente q e o resto r, então temos que a = d*q + r, com |r| < d.

Nesse exercício, temos que d=17.

Além disso, sendo q o quociente, temos que nesse exercício o resto será q².

Desse modo, deve ocorrer q² < 17.

(FUVEST) Sabendo que os anos bissextos são os múltiplos de 4, e que o primeiro dia de 2007 foi segunda-feira, o próximo ano a começar em uma segunda-feira será quando?


Considere que um ano normal (com 365 dias) comece na segunda-feira. Relacionando os dias da semana com os números, temos que:
  • segunda-feira -- 1;
  • terça-feira -- 2;
  • quarta-feira -- 3;
  • quinta-feira -- 4;
  • sexta-feira -- 5;
  • sábado -- 6;
  • domingo -- 7.

Dado o n-ésimo dia do ano (ou seja, n natural tal que 1 <= n <= 365) se queremos saber em que dia da semana ele cairá, então basta tomar o resto da divisão de n por 7. Se o resto for de 1 à 6, então temos os dias de segunda-feria à sábado. Mas, se o resto for zero, então temos um domingo. Por exemplo, o dia 10 cariá na quarta-feira. Já o dia 40 cairá na sexta-feira. Note que o dia 365 cairá em uma segunda-feria.

De modo geral, em um ano normal temos que ele começa e termina no mesmo dia da semana.

Agora, imagine que fosse um ano bissexto também começando em uma segunda-feria. Tomando o resto da divisão de 366 por 7, obtemos 2. Ou seja, esse ano termina em uma terça-feira.

De modo geral, em um ano bissexto temos que se ele começa no dia x da semana, então ele termina no dia x+1. Por exemplo, se ele começa na terça-feira, então ele termina na quarta-feira.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.