• Anúncio Global
    Respostas
    Exibições
    Última mensagem

funçao quadratica

funçao quadratica

Mensagempor stanley tiago » Qua Abr 20, 2011 16:12

considere a funçao f\left(x \right)= ax^2+bx+c .
Sabendo que f\left(1 \right)= 4 , f\left(2 \right)=0 ,  f\left(3 \right)=-2,
diga quanto vale o produto abc


eu acho q é assim q deselvolve isso ;

f\left(1 \right)= a(1)^2+1b+c --- a+b+c=4

f\left(2 \right)= a(2)^2+2b+c --- 4a+2b+c=0

f\left(3 \right)= a(3)^2+2b+c --- 9a+3b+c=-2

\begin{vmatrix}
   a+b+c=4 &   \\ 
4a+2b+c=0 \\  
9a+3b+c=-2  \\ 
    
\end{vmatrix} mas apartir daqui nao saiu mais nada !
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: funçao quadratica

Mensagempor NMiguel » Qua Abr 20, 2011 19:49

\begin{vmatrix}
   a+b+c=4 &   \\ 
4a+2b+c=0 \\  
9a+3b+c=-2  \\ 
    
\end{vmatrix}

fazendo L1 <- L1-L2 e L2 <- L2-L3

\begin{vmatrix}
   -3a-b=4 &   \\ 
-5a-b=2 \\  
9a+3b+c=-2  \\ 
    
\end{vmatrix}

fazendo L1 <- L1-L2

\begin{vmatrix}
   2a=2 &   \\ 
-5a-b=2 \\  
9a+3b+c=-2  \\ 
    
\end{vmatrix}

Da primeira linha da matriz obtemos a=1;
Da segunda linha e de a=1 obtemos b=-7;
Da terceira linha, de a=1 e de b=-7 obtemos c=10;
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: funçao quadratica

Mensagempor stanley tiago » Qua Abr 20, 2011 22:05

desculpa eu acho q te confundi esse exercicio é de função do 2° grau e não de matriz

considere a funçao f\left(x \right)= ax^2+bx+c .
Sabendo que f\left(1 \right)= 4 , f\left(2 \right)=0 ,  f\left(3 \right)=-2,
diga quanto vale o produto abc
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: funçao quadratica

Mensagempor NMiguel » Qui Abr 21, 2011 10:53

Não me confundiste. Eu simplesmente peguei no sistema de 3 equações que colocaste e resolvi-o da forma matricial. Qualquer matriz representa um sistema de equações lineares e qualquer sistema de equações lineares pode ser escrito como uma matriz.

Quando eu obtive a=1, b=-7 e c=10, isto significa que a tua função do segundo grau é f(x)=x^2-7x+10.

Assim, a resposta à tua pergunta, "quanto vale o produto abc", é -70.
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}