• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calculo de Limite!!

Calculo de Limite!!

Mensagempor vyhonda » Ter Abr 19, 2011 19:50

Galera,

como resolver isso ai.... quando se trata de raiz quadrada basta multiplicar pelo conjugado,

mas qual sera o conjugado do numerador para multiplicar???

\lim_{x\rightarrow0} \frac{\sqrt[3]{8-2x+{x}^{2}}-2}{x-{x}^{2}}



a resp é -1/6 [url]http://www.wolframalpha.com/input/?i=lim&a=*C.lim-_*Calculator.dflt-&f2=%28%288-2x%2Bx^2%29^%281%2F3%29-2%29%2F+%28x-x^2%29&f=Limit.limitfunction_%28%288-2x%2Bx^2%29^%281%2F3%29-2%29%2F+%28x-x^2%29&f3=0&f=Limit.limit_0&a=*FVarOpt.1-_**-.***Limit.limitvariable--.**Limit.direction---.*--[/url]


Valeu pela ajuda!!
vyhonda
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jan 17, 2010 20:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Materiais - Unesp
Andamento: cursando

Re: Calculo de Limite!!

Mensagempor LuizAquino » Ter Abr 19, 2011 20:01

Leia o tópico abaixo e em seguida tente resolver o exercício. Você vai usar uma estratégia parecida.

Racionalização de denominador composto de "três parcelas"
viewtopic.php?f=106&t=4276
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Calculo de Limite!!

Mensagempor vyhonda » Qua Abr 20, 2011 00:34

Opa LuizAlquino ,

valeu pela ajuda...
vyhonda
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jan 17, 2010 20:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Materiais - Unesp
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59