• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matriz resolvida por dois métodos

Matriz resolvida por dois métodos

Mensagempor apotema2010 » Dom Abr 17, 2011 10:23

O enunciado:
Resolva os sistema abaixo por, pelo menos dois métodos diferentes:
3x+2y-z=0
5x+z=2
2y-3z=7
pelo método de Gauss o resultado que eu cheguei foi x=0,77 y=4,09 e z=5,86
já pelo método de Cramer achei x= 1,571 y=5,28 z=5,86
estão os dois errados ou algum deles está certo?
Por favor me ajude a começar a resolução ou mostrar o caminho para eu resolver esse sistema:
\left(cos\alpha \right)x+\left(sen\alpha \right)=sen\beta

\left(-sen\alpha \right)+\left(cos\alpha \right)y=cos\beta
Desde já obrigada.
apotema2010
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qua Fev 17, 2010 14:00
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Matriz resolvida por dois métodos

Mensagempor Molina » Dom Abr 17, 2011 17:50

Boa tarde.

apotema2010 escreveu:O enunciado:
Resolva os sistema abaixo por, pelo menos dois métodos diferentes:
3x+2y-z=0
5x+z=2
2y-3z=7
pelo método de Gauss o resultado que eu cheguei foi x=0,77 y=4,09 e z=5,86
já pelo método de Cramer achei x= 1,571 y=5,28 z=5,86
estão os dois errados ou algum deles está certo?


Nesta questão acima substitua os o valores encontrados no sistema e verifique se está correto ou não.

apotema2010 escreveu:Por favor me ajude a começar a resolução ou mostrar o caminho para eu resolver esse sistema:
\left(cos\alpha \right)x+\left(sen\alpha \right)=sen\beta

\left(-sen\alpha \right)+\left(cos\alpha \right)y=cos\beta


Vamos resolver usando a regra de Cramer:

\Delta = 
\begin{vmatrix}
   cos\alpha & sen\alpha  \\ 
   -sen\alpha & cos\alpha 
\end{vmatrix} = cos^2 \alpha + sen^2 \alpha = 1

\Delta_x = 
\begin{vmatrix}
   sen\beta & sen\alpha  \\ 
   cos\beta & cos\alpha 
\end{vmatrix} = sen\beta *cos\alpha - sen\alpha *cos\beta = sen(\beta - \alpha)

\Delta_y = 
\begin{vmatrix}
   cos\alpha & sen\beta  \\ 
    -sen\alpha & cos\beta 
\end{vmatrix} =  cos\beta*cos\alpha + sen\beta *sen\alpha  = cos(\beta - \alpha)

Concluimos que:

x=\frac{\Delta_x}{\Delta}=sen(\beta - \alpha)

y=\frac{\Delta_y}{\Delta}=cos(\beta - \alpha)


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Matriz resolvida por dois métodos

Mensagempor apotema2010 » Seg Abr 18, 2011 13:23

Obrigada pela resolução, vou analisar e ver se tenho dúvidas (talvez tenha).
Abraços.
apotema2010
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qua Fev 17, 2010 14:00
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Matriz resolvida por dois métodos

Mensagempor apotema2010 » Seg Abr 18, 2011 14:15

Entendi super bem a resolução com as identidades trigonométricas, mas fiz a substituição no primeiro sistema e todas estão erradas, vc pode me ajudar?
apotema2010
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qua Fev 17, 2010 14:00
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Matriz resolvida por dois métodos

Mensagempor Molina » Seg Abr 18, 2011 14:34

Boa tarde.

apotema2010 escreveu:Entendi super bem a resolução com as identidades trigonométricas, mas fiz a substituição no primeiro sistema e todas estão erradas, vc pode me ajudar?


Tente resolver este sistema por Cramer:

\left\{
\begin{array}{lll}
\displaystyle 3x+2y-z=0 \\
\displaystyle 5x+z=2 \\
\displaystyle 2y-3z=7
\end{array}
\right

onde:

\Delta = 
\begin{vmatrix}
   3 & 2 & -1  \\ 
   5 & 0 & 1 \\
   0 & 2 & -3
\end{vmatrix}

\Delta_x = 
\begin{vmatrix}
   0 & 2 & -1  \\ 
   2 & 0 & 1 \\
   7 & 2 & -3
\end{vmatrix}

\Delta_y = 
\begin{vmatrix}
   3 & 0 & -1  \\ 
   5 & 2 & 1 \\
   0 & 7 & -3
\end{vmatrix}

\Delta_z = 
\begin{vmatrix}
   3 & 2 & 0  \\ 
   5 & 0 & 2 \\
   0 & 2 & 7
\end{vmatrix}


Qualquer dúvida informe!
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Matriz resolvida por dois métodos

Mensagempor apotema2010 » Seg Abr 18, 2011 14:51

\Delta=14

\Delta x=22

\Delta y=74

\Delta z=82

x=1,571 y=5,285 z=5,857
se eu substituo esses dados não dá certo
apotema2010
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qua Fev 17, 2010 14:00
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Matriz resolvida por dois métodos

Mensagempor Molina » Seg Abr 18, 2011 19:47

Boa (quase) noite.

\Delta = 
\begin{vmatrix}
   3 & 2 & -1  \\ 
   5 & 0 & 1 \\
   0 & 2 & -3
\end{vmatrix} = 3*(-2) -2*(-15) -10 = -6 + 30 -10 = 14

\Delta_x = 
\begin{vmatrix}
   0 & 2 & -1  \\ 
   2 & 0 & 1 \\
   7 & 2 & -3
\end{vmatrix} = -2*(-6-7) - 4 = -2*(-13)-4 = 22

\Delta_y = 
\begin{vmatrix}
   3 & 0 & -1  \\ 
   5 & 2 & 1 \\
   0 & 7 & -3
\end{vmatrix} = 3*(-6-7) -35 = 3*(-13) - 35 = -74

\Delta_z = 
\begin{vmatrix}
   3 & 2 & 0  \\ 
   5 & 0 & 2 \\
   0 & 2 & 7
\end{vmatrix} = 3 * (-4) -2*35 = -12 - 70 = -82

Depois faça:

i=\frac{\Delta_i}{\Delta}, onde i=x,y,z

Que o resultado vai fechar!


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Matriz resolvida por dois métodos

Mensagempor LuizAquino » Seg Abr 18, 2011 20:37

Olá apotema2010,

Ao que parece você está aproximando a solução.

Ou seja, você está pegando x = 22/14 e efetuando a divisão aproximada de 22 por 14, dizendo assim que a solução é x = 1,571.

É óbvio que se você fizer isso e substituir as aproximações de cada uma das incógnitas nas equações você não encontrará uma igualdade.

Para achar a igualdade você precisa substituir as incógnitas pelo valor certo e não por uma aproximação.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Matriz resolvida por dois métodos

Mensagempor apotema2010 » Ter Abr 19, 2011 09:42

Obrigada pela ajuda, errei no sinal e na aproximação, as dicas foram fundamentais para o meu entendimento, abraços.
apotema2010
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Qua Fev 17, 2010 14:00
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?