por apotema2010 » Dom Abr 17, 2011 10:23
O enunciado:
Resolva os sistema abaixo por, pelo menos dois métodos diferentes:
3x+2y-z=0
5x+z=2
2y-3z=7
pelo método de Gauss o resultado que eu cheguei foi x=0,77 y=4,09 e z=5,86
já pelo método de Cramer achei x= 1,571 y=5,28 z=5,86
estão os dois errados ou algum deles está certo?
Por favor me ajude a começar a resolução ou mostrar o caminho para eu resolver esse sistema:

Desde já obrigada.
-
apotema2010
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qua Fev 17, 2010 14:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por Molina » Dom Abr 17, 2011 17:50
Boa tarde.
apotema2010 escreveu:O enunciado:
Resolva os sistema abaixo por, pelo menos dois métodos diferentes:
3x+2y-z=0
5x+z=2
2y-3z=7
pelo método de Gauss o resultado que eu cheguei foi x=0,77 y=4,09 e z=5,86
já pelo método de Cramer achei x= 1,571 y=5,28 z=5,86
estão os dois errados ou algum deles está certo?
Nesta questão acima substitua os o valores encontrados no sistema e verifique se está correto ou não.
apotema2010 escreveu:Por favor me ajude a começar a resolução ou mostrar o caminho para eu resolver esse sistema:

Vamos resolver usando a regra de Cramer:



Concluimos que:



Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por apotema2010 » Seg Abr 18, 2011 13:23
Obrigada pela resolução, vou analisar e ver se tenho dúvidas (talvez tenha).
Abraços.
-
apotema2010
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qua Fev 17, 2010 14:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por apotema2010 » Seg Abr 18, 2011 14:15
Entendi super bem a resolução com as identidades trigonométricas, mas fiz a substituição no primeiro sistema e todas estão erradas, vc pode me ajudar?
-
apotema2010
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qua Fev 17, 2010 14:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por Molina » Seg Abr 18, 2011 14:34
Boa tarde.
apotema2010 escreveu:Entendi super bem a resolução com as identidades trigonométricas, mas fiz a substituição no primeiro sistema e todas estão erradas, vc pode me ajudar?
Tente resolver este sistema por Cramer:

onde:




Qualquer dúvida informe!
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por apotema2010 » Seg Abr 18, 2011 14:51
\Delta=14
\Delta x=22
\Delta y=74
\Delta z=82
x=1,571 y=5,285 z=5,857
se eu substituo esses dados não dá certo
-
apotema2010
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qua Fev 17, 2010 14:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por Molina » Seg Abr 18, 2011 19:47
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por LuizAquino » Seg Abr 18, 2011 20:37
Olá apotema2010,
Ao que parece você está aproximando a solução.
Ou seja, você está pegando x = 22/14 e efetuando a divisão aproximada de 22 por 14, dizendo assim que a solução é x = 1,571.
É óbvio que se você fizer isso e substituir as aproximações de cada uma das incógnitas nas equações você não encontrará uma igualdade.
Para achar a igualdade você precisa substituir as incógnitas pelo valor certo e não por uma aproximação.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por apotema2010 » Ter Abr 19, 2011 09:42
Obrigada pela ajuda, errei no sinal e na aproximação, as dicas foram fundamentais para o meu entendimento, abraços.
-
apotema2010
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qua Fev 17, 2010 14:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Matrizes e Determinantes
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Raíz da função] Dois métodos com resultados diferentes
por char0 » Qui Mar 15, 2012 00:36
- 2 Respostas
- 1669 Exibições
- Última mensagem por char0

Qui Mar 15, 2012 01:18
Funções
-
- questao resolvida
por adauto martins » Qui Mar 19, 2020 18:54
- 3 Respostas
- 3334 Exibições
- Última mensagem por adauto martins

Dom Abr 05, 2020 11:10
Álgebra Elementar
-
- questao resolvida
por adauto martins » Seg Mai 18, 2020 16:34
- 2 Respostas
- 8062 Exibições
- Última mensagem por adauto martins

Seg Mai 25, 2020 16:34
Cálculo: Limites, Derivadas e Integrais
-
- Integral definida[Resolvida]
por procyon » Ter Nov 01, 2011 00:34
- 3 Respostas
- 3386 Exibições
- Última mensagem por LuizAquino

Ter Nov 01, 2011 22:25
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] analisando os métodos
por Ana_Rodrigues » Qui Fev 02, 2012 18:20
- 2 Respostas
- 1611 Exibições
- Última mensagem por Ana_Rodrigues

Sex Fev 03, 2012 15:06
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.