por Letsdoit » Sex Abr 08, 2011 22:43
Essa questão caiu na Fuvest:
Dois quintos do meu salário são reservados para o aluguel e a metade do que sobra, para a alimentação. Descontados o dinheiro do aluguel e o da alimentação, coloco um terço do que sobra na poupança, restando, então, R$1.200,00 para gastos diversos. Qual é meu salário?
Consigo fazer até certo ponto. Porém, na hora que travei, dei uma olhadinha na resolução de um dos professores do Colégio Poliedro, e não entendi porque ele fez isso:
Gastos diversos -> (1 - 1/3) { x - [1/2 (1 - 2/5) x } - 2/5x = 1200
Por quê ele igualou tudo isso à 1200? deveria ser (1 - 1/3) { x - [1/2 (1 - 2/5) x } - 2/5x + 1200 = x, sendo x, o salário? Uma vez que 1200 restou...
Paciência comigo, hahaha, sou meio lerdo em Matemática.
-
Letsdoit
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Abr 08, 2011 22:34
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Abelardo » Qui Abr 14, 2011 20:11
Poderia postar novamente a expressão usando o Latex. Do jeito que está, não consigo entender nada.
-

Abelardo
- Colaborador Voluntário

-
- Mensagens: 159
- Registrado em: Qui Mar 03, 2011 01:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função com Graus
por Adonist » Sex Jun 25, 2010 00:50
- 2 Respostas
- 1146 Exibições
- Última mensagem por Tom

Sex Jul 02, 2010 01:42
Funções
-
- Graus na Forma Trigonométrica
por C0PILHA » Qua Jul 01, 2009 00:48
- 2 Respostas
- 2167 Exibições
- Última mensagem por C0PILHA

Seg Ago 10, 2009 00:19
Números Complexos
-
- Divisão de polinomios com graus diferentes
por Soprano » Sex Set 30, 2016 13:27
- 0 Respostas
- 1425 Exibições
- Última mensagem por Soprano

Sex Set 30, 2016 13:27
Polinômios
-
- Expressar medida do ângulo em radianos e graus?
por FilipiM » Dom Mar 09, 2014 16:54
- 1 Respostas
- 2258 Exibições
- Última mensagem por Russman

Dom Mar 09, 2014 23:57
Trigonometria
-
- Problemas de MMC
por Gisele Rocha » Qua Jun 24, 2009 12:33
- 2 Respostas
- 4547 Exibições
- Última mensagem por Gisele Rocha

Qua Jun 24, 2009 16:28
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.