• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda triangulo

Ajuda triangulo

Mensagempor tiagofe » Qui Abr 14, 2011 14:42

Boa tarde pessoal, estou com mais uma duvida e agradecia a ajuda de vocês.

Na imagem está um triangulo isoceles.

http://tinypic.com/view.php?pic=14ya79j&s=7
ou
http://img97.imageshack.us/f/semttuloors.jpg/

O exercicio pede o seguinte:

1) Mostre que a area em metros quadrados da zona escura é dada em função de x, por;
4x^2 + 24x + 72 (x€]0,6]

esse eu consegui, a pergunta 2)

Determine o valor de X para que a area escura seja minima e calcule essa area.

Com a ajuda da calculadora grafica eu consegui fazer, mas o exercio pede para fazer em modo analitico, e eu não faço ideia de como fazer ja pesquisei mas nao encontrei nada.

Obrigado
tiagofe
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Mar 31, 2011 19:50
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: Ajuda triangulo

Mensagempor MarceloFantini » Qui Abr 14, 2011 18:24

Apenas encontre o valor de x onde a função é mínima, ou seja, o valor do vértice (pois ela tem "boca para cima").
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Ajuda triangulo

Mensagempor tiagofe » Qui Abr 14, 2011 18:41

Fantini escreveu:Apenas encontre o valor de x onde a função é mínima, ou seja, o valor do vértice (pois ela tem "boca para cima").


Pode explicar melhor? a calculadora da para X=3 e Y=36

Obrigado
tiagofe
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Mar 31, 2011 19:50
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: Ajuda triangulo

Mensagempor MarceloFantini » Qui Abr 14, 2011 18:46

Você encontrou onde a função ZERA, não onde a função é MÍNIMA. São duas coisas que não são necessariamente as mesmas. O que você entende quando dizem pra você encontrar o mínimo de alguma coisa?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Ajuda triangulo

Mensagempor tiagofe » Qui Abr 14, 2011 19:24

Fantini escreveu:Você encontrou onde a função ZERA, não onde a função é MÍNIMA. São duas coisas que não são necessariamente as mesmas. O que você entende quando dizem pra você encontrar o mínimo de alguma coisa?


encontrar o valor mais baixo dela.
tiagofe
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qui Mar 31, 2011 19:50
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: Ajuda triangulo

Mensagempor MarceloFantini » Qui Abr 14, 2011 19:37

Um segundo...tem certeza que a função é 4x^2 +24x +72? Como você fez?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59