• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vetor Ortogonal

Vetor Ortogonal

Mensagempor roger0196 » Ter Abr 05, 2011 13:07

Olá, estou postando alguns exercícios que não estou conseguindo resolver totalmente...
Aqui vai mais um:

Dados os vetores a=(3,4,2) e b=(2,1,1), obtenha um vetor que seja ao mesmo tempo ortogonal aos vetores 2a-b e a+b.

2(3,4,2)-(2,1,1)
(6,8,4)-(2,1,1)
(4,7,3)
a+b=(3+2,4+1,2+1)
(5,5,3)
Daqui em diante não sei que direção tomar. Poderiam me dar uma orientação do que preciso começar a fazer?

Um abraço.
roger0196
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Abr 04, 2011 13:37
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Vetor Ortogonal

Mensagempor LuizAquino » Ter Abr 05, 2011 14:10

Dica
Dados os vetores \vec{u} e \vec{v}, por definição temos que o vetor \vec{w}=\vec{u}\times\vec{v} é ortogonal a \vec{u} e a \vec{v}. Ou seja, se \vec{w}=\vec{u}\times\vec{v}, então \vec{w}\perp \vec{u} e \vec{w}\perp \vec{v}.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Vetor Ortogonal

Mensagempor roger0196 » Qua Abr 06, 2011 14:37

Vamos ver.

\vec{w}=\vec{a}x\vec{b}

\vec{w}=.

\begin{vmatrix}
   4,7,3 \\ 
   5,5,3 
\end{vmatrix}

\vec{w}=(6,3,17)

é assim?
roger0196
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Abr 04, 2011 13:37
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Vetor Ortogonal

Mensagempor LuizAquino » Qui Abr 07, 2011 18:19

(4,\, 7,\, 3)\times (5,\, 5,\, 3) = \begin{vmatrix}\vec{i} & \vec{j} & \vec{k} \\ 4 & 7 & 3 \\ 5  & 5 & 3 \end{vmatrix} =(7\cdot 3 - 3\cdot 5)\vec{i} + (3\cdot 5 - 4\cdot 3)\vec{j} + (4\cdot 5 - 7\cdot 5)\vec{k} =(6,\, 3,\, -15)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Vetor Ortogonal

Mensagempor roger0196 » Ter Abr 12, 2011 15:05

Obrigado Luiz...
Acho que estou começando a entender.
roger0196
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Abr 04, 2011 13:37
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.