por Fabricio dalla » Seg Abr 04, 2011 12:54
(UERJ)Considere o numero complexo
![z=\frac{1-i}{1+i\sqrt[2]{3}} z=\frac{1-i}{1+i\sqrt[2]{3}}](/latexrender/pictures/4a06af6a167580f6d28c4dfdee28c026.png)
Ao escrever z na forma trigonometrica,os valores do modulo e do argumento serão,respectivamente,de:
obs(eu tenho q fazer o conjugado e racionalizar quantas vezes pra depois descobri

etc..? nunca racionalizei tanto na minha vida)
resp:
![\frac{\sqrt[2]{2}}{2} e \frac{17\pi}{12} \frac{\sqrt[2]{2}}{2} e \frac{17\pi}{12}](/latexrender/pictures/db654c603b4434c07877df27b8df3c7c.png)
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Elcioschin » Seg Abr 04, 2011 13:41
Basta racionalizar UMA única vez
z = (1 - i)/(1 + i*V3)
z = (1 - i)*(1 - i*V3)/(1 + i*V3)*(1 - i*V3)
z = (1 - i*V3 - i - i²*V3)/[1² - (i*V3)²]
z = [(1 + V3) - i*(1 + V3)]/4
z = (1 + V3)/4 - i*(1 + V3)/4
|z|² = [(1 + V3)/4]² + [(1 + V3)/4]² ----> |z|² = (4 + 2*V3)/16 + ( 4 - 2*V3)/16 ----> |2|² = 1/2 ----> |z| = V2/2
tgT = - [(1 + V3)/4]/[(1 + V3)/4] -----> tgT = -1 ----> 4º quadrante ----> T = 7*pi/4 ----> Gabarito errado
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Fabricio dalla » Seg Abr 04, 2011 14:00
sao cinco alternativas das cinco somente 3 tem modulo
![\frac{\sqrt[2]{2}}{2} \frac{\sqrt[2]{2}}{2}](/latexrender/pictures/087ef0498ec0056debd92518bfa3944e.png)
que é o correto
e os argumentos dessas 3 sao
c 25pi/12
d 17pi/12
e 25pi/12
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Fabricio dalla » Seg Abr 04, 2011 14:45
Elcioschin eu devo ta errado mas a parte do numerador da fraçao ou melhor a parte real num é 1-
![\sqrt[2]{3} \sqrt[2]{3}](/latexrender/pictures/77529b271d4ed2ab8ca1f0755594aa28.png)
? ai no caso como a parte real e negativa multiplica por -1 e troca-se as ordens da parte real e imaginaria
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão de Concurso-Número Complexos
por Pri Ferreira » Qua Mar 21, 2012 13:44
- 1 Respostas
- 1500 Exibições
- Última mensagem por LuizAquino

Sáb Mar 31, 2012 15:31
Números Complexos
-
- Números complexos módulo de dois números complexos important
por elisamaria » Qui Jun 11, 2015 16:56
- 1 Respostas
- 16148 Exibições
- Última mensagem por nakagumahissao

Qui Jun 11, 2015 19:20
Números Complexos
-
- Próximo Número...?
por Molina » Sáb Jun 21, 2008 17:44
- 8 Respostas
- 8646 Exibições
- Última mensagem por Rafael Dias

Sáb Ago 30, 2008 22:31
Desafios Fáceis
-
- número de elementos
por sinuca147 » Qui Mai 14, 2009 04:43
- 4 Respostas
- 6020 Exibições
- Última mensagem por sinuca147

Dom Mai 17, 2009 17:14
Conjuntos
-
- apóstolos no número
por lieberth » Qui Jun 18, 2009 18:42
- 2 Respostas
- 1677 Exibições
- Última mensagem por Molina

Sex Jun 19, 2009 08:41
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.