• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjuntos

Conjuntos

Mensagempor Juliane » Sáb Abr 02, 2011 20:46

Dados A={x| x é primo e 1 \leq x<6}, B={x \epsilon Z* | -2,6<x \leq13/2 }, C={x | x é um numero inteiro, par, não nulo, e menor que 8}

{\subset}_{B}A \cap {\subset}_{B}C = ?

para {\subset}_{B}A eu achei {-2,-1,1,4,6}

A minha dúvida é: no conj. C entram números como -2, -4,-6? porque no gabarito a resposta dessa questão é {-2,-1,1}
Juliane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sáb Set 04, 2010 17:29
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Edificações
Andamento: cursando

Re: Conjuntos

Mensagempor MarceloFantini » Dom Abr 03, 2011 00:56

Não entendo o que quer dizer com \subset_B A \cap \subset_B C
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Conjuntos

Mensagempor Juliane » Dom Abr 03, 2011 21:49

Eu quis dizer complementar de A em relação a B interseção complementar de C em relação a B
Juliane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sáb Set 04, 2010 17:29
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Edificações
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.