• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivadas

Derivadas

Mensagempor Revelants » Dom Out 05, 2008 11:29

Resolva as derivadas primeiras das funções:

f(x)={x}^{4}.(\sqrt[]{3x-7}


f(x)=\frac{2x-5}{3x²+1}


y=4.\sqrt[5]{x³}


y= ({x}^{4}-2{x}^{-2}+4x³-x+3{)}^{-5}


f(x)=1n\left(\frac{2-5x}{1+3x} \right)


h(t)={5}^{t²-1}
Editado pela última vez por Revelants em Dom Out 05, 2008 20:37, em um total de 1 vez.
Revelants
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Out 04, 2008 23:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Derivadas

Mensagempor Molina » Dom Out 05, 2008 16:48

Boa tarde.

Pelo o que andei olhando você deve usar em algumas a Regra da Cadeia e em outras a Regra do Quociente.
Vou passar as notações que eu particularmente utilizo nas duas. Espero que te ajude:

Regra da Cadeia:
\frac{dy}{dx}=\frac{dy}{du}.\frac{du}{dx}

Regra do Quociente:
\frac{g(x).f'(x)-f(x).g'(x)}{{[g(x)]}^{2}}

Bom estudo!
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}