• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Analitica (Graduação).

Geometria Analitica (Graduação).

Mensagempor 380625 » Ter Mar 29, 2011 11:44

Bom dia estou no meu primeiro ano de graduação e estou tendo aula de G.A. nos primeiros capitulos o professor passou escalonamento metodo de gaus jordan entre outras coisas, consegui absorver toda a materia dessa primeira parte, porem ele passou um exercicio que eu não consigo nem começar.

Sabendo que os pontos ( -3, 20^1/2), ( 5^1/2, 2), (8^1/2, -4) da hipérbole sao soluções da equação ax^2 + by^2 + c = 0, utilize um metodo de escalonamento para determinar coeficientes a, b ,c da equação da hipérbole.

Ficaria grato com a ajuda.

Flávio Santana.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Geometria Analitica (Graduação).

Mensagempor LuizAquino » Ter Mar 29, 2011 12:05

Dica

Monte um sistema de 3 equações e 3 incógnitas. Cada ponto dará origem a uma equação. As incógnitas serão as constantes a, b e c. Por exemplo, se o ponto \left( -3,\, 20^{\frac{1}{2}}\right) pertence a hipérbole ax^2 + by^2 + c = 0, então temos a equação a(-3)^2 + b\left(20^{\frac{1}{2}}\right)^2 + c = 0.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}