• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função

função

Mensagempor [secret] » Seg Mar 28, 2011 18:54

gente, iniciei o curso de cálculo no meio, estou muito confusa, não consigo resolver esse exercicio, nem sei por onde começo, por favor ajudem!!

Seja f:\left[0 , 1 \right] \rightarrow \Re uma função definida de tal forma que f\left(0 \right) = f\left(1 \right) mostre que existe um x \epsilon \left[0 , \frac{1}{2} \right] tal que f\left(x \right) = f\left(x + \frac{1}{2} \right)

obrigada!!
[secret]
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Mar 28, 2011 18:32
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: função

Mensagempor Elcioschin » Seg Mar 28, 2011 22:52

f(x) = f(x + 1/2)

Para x = 0 ----> f(0) = f(0 + 1/2) ----> f(0) = f(1/2) -----> I

Para x = 1/2 ----> f(1/2) = f(1/2 + 1/2) -----> f(1/2) = f(1) ----> II

I = II ----> f(0) = f(1) ---> OK
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: função

Mensagempor [secret] » Ter Mar 29, 2011 13:52

obrigada!!!
[secret]
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Mar 28, 2011 18:32
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.