• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Provar que ||u|| > 0

Provar que ||u|| > 0

Mensagempor 0 kelvin » Qui Mar 24, 2011 20:35

Justifiquei usando a definição que esta no livro do P. Boulos e Camargo. Se o vetor não é nulo, o comprimento dele é maior que 0, portanto, a afirmação ||\vec{u}|| > 0 é verdadeira. ||\vec{0}|| > 0 não existe.

É assim que prova?
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Provar que ||u|| > 0

Mensagempor MarceloFantini » Qui Mar 24, 2011 20:51

Bom, normalmente eu faço assim: tomando \vec{u}=(a,b), com a,b \neq 0, temos que ||\vec{u}|| = \sqrt{a^2+b^2}. Como a^2+b^2>0 (pois são diferentes de zero), segue que ||\vec{u}|| > 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Provar que ||u|| > 0

Mensagempor 0 kelvin » Qui Mar 24, 2011 21:16

Uhm.. reparei que tem uma diferença entre a segunda a terceira edição do livro. Na segunda tem a definição do vetor e daí vem as operações. Na terceira tem uma lista de definições e até uma parte de analogia pra explicar o conceito, antes de começarem as operações. Como eu vi o exercicio na terceira edição que tinha na biblioteca, não tinha reparado que fizeram essa mudança de uma edição pra outra, daí nem vi as operações antes do exercicio. Esse exercicio nem tem na segunda edição *-)

Os textos tambem foram bastante revisados, na terceira edição tinha um aviso "cuidado com a expressão vetores equipontes", que não tem na segunda.

Tomando a definição do segmento orientado, entendi a prova por Pitágoras.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}