• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[proporcionalidade] Problema

[proporcionalidade] Problema

Mensagempor Cleyson007 » Sáb Ago 02, 2008 02:02

Olá boa noite!

Repartindo 420 em três partes que são diretamente proporcionais aos números 3, 7 e 4, respectivamente, encontramos:

a) 90, 210 e 120 b) 90, 300 e 30 c) 60, 240 e 120 d) 60, 220 e 140 e) 90, 200 e 130

No meu modo de pensar, 90 é divisível por 3, 210 por 7 e 120 por 4, está correto o meu pensamento?

Obtive como resposta a alternativa a.

Obrigado.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Problema

Mensagempor admin » Sáb Ago 02, 2008 21:33

Olá, boa noite!

Realmente, os três números da resposta terão que ser divisíveis por 3, 7 e 4, respectivamente.
Mas, e se não houvesse altenativa para você testar, como obteria as três partes do resultado?

A propósito, há outras perguntas pendentes em outros tópicos seus.

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Problema

Mensagempor Cleyson007 » Dom Ago 03, 2008 00:49

fabiosousa escreveu:Olá, boa noite!

Realmente, os três números da resposta terão que ser divisíveis por 3, 7 e 4, respectivamente.
Mas, e se não houvesse altenativa para você testar, como obteria as três partes do resultado?

A propósito, há outras perguntas pendentes em outros tópicos seus.

Bons estudos!


Olá Fábio Sousa, boa noite!!!

Na medida do possível estarei questionando as dúvidas que ficaram pendentes em outros tópicos.

Pelo que você escreveu parece que a alternativa a realmente está correta não é?

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [proporcionalidade] Problema

Mensagempor admin » Dom Ago 03, 2008 01:06

Boa noite, Cleyson!

Sim está correta, mas é importante você tentar obter os três números partindo de que você os desconhece.
Pense a partir daqui:
Chamando as três partes procuradas de A, B e C, pela proporcionalidade, há uma constante k tal que:

A = k \cdot 3

B = k \cdot 7

C = k \cdot 4

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [proporcionalidade] Problema

Mensagempor Cleyson007 » Dom Ago 24, 2008 19:20

fabiosousa escreveu:Boa noite, Cleyson!

Sim está correta, mas é importante você tentar obter os três números partindo de que você os desconhece.
Pense a partir daqui:
Chamando as três partes procuradas de A, B e C, pela proporcionalidade, há uma constante k tal que:

A = k \cdot 3

B = k \cdot 7

C = k \cdot 4

Até mais!


Olá Fabio Sousa, tudo bem contigo?

Consegui perceber pelo que me disse que o valor da constante K é 30.

Não consegui entender o porque de pensar a partir daqui: A = k \cdot 3

B = k \cdot 7

C = k \cdot 4

Por favor me explique.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [proporcionalidade] Problema

Mensagempor admin » Seg Ago 25, 2008 00:38

Cleyson, é a condição de proporcionalidade:
três partes que são diretamente proporcionais aos números 3, 7 e 4, respectivamente


Também podemos escrever assim:

\frac{A}{3} = k

\frac{B}{7} = k

\frac{C}{4} = k

Ser diretamente porporcional como escrito acima, significa que aumentando ou dimimuindo o numerador, o denominador também deve aumentar ou diminuir na mesma proporção, ou seja, os números variam na mesma razão que se mantém constante.

Tendo encontrado o valor da constante de proporcionalidade, substituindo, você terá as três equações com as três partes como incógnitas.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [proporcionalidade] Problema

Mensagempor paulo testoni » Qua Out 01, 2008 16:50

Hola Cleyson007.

Fazendo:
3 + 4 + 7 = 14
420 : 14 = 30 é o parâmentro que estamos procurando, então:

30*3 = 90
30*4 = 120
30*7 = 210
paulo testoni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Ter Set 30, 2008 11:24
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: [proporcionalidade] Problema

Mensagempor Cleyson007 » Sáb Mai 30, 2009 13:01

Olá Fábo Sousa e Paulo Testoni!

Entendi o raciocínio da questão :-D

Realmente.. estava testando os valores :-D

Obrigado pela ajuda.

Um abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.