• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função - UFMG

Função - UFMG

Mensagempor Kelvin Brayan » Ter Mar 22, 2011 00:29

Olá amigos, há uma questão de função na qual tenho muitas dúvidas sobre como resolvê-la. Aliás, isso ocorre em quase todo tipo de questão semelhante a esta abaixo:

(UFMG) Se f é uma função tal que f(1)=3 e f(x+y)= f(x) + f(y) para qualquer x e y reais, então f(2) é igual a
a) 1
b) 2
c) 3
d) 6
e) 8

Como eu a resolvo?

Obrigado !
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: Função - UFMG

Mensagempor Molina » Ter Mar 22, 2011 10:27

Boa tarde, Kelvin.

Vou dar uma dica, que acho que será o suficiente para você resolver a questão:

Queremos descobrir f(2), certo? Então:

f(2) = f(1+1) = f(1) + f(1)=...


Conseguiu? :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Função - UFMG

Mensagempor Kelvin Brayan » Ter Mar 22, 2011 15:24

Consegui resolver !


Muito Obrigado !

Mas, tenho uma dúvida. Por exemplo:

É sempre correto afirmar que f(2)= f(1) + f(1), ou usando outro exemplo f(5) = f(2) + f(3) ?

Ou depende da fórmula da função ? Ou esses exemplos são válidos apenas para essa propriedade f(x+y) = f(x) + f(y) ?
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando

Re: Função - UFMG

Mensagempor Molina » Ter Mar 22, 2011 22:48

Boa noite.

Isto é sí um exemplo que ele usou neste exercício. Não temos que f(x+y)=f(x)+f(y) é sempre válido. Então não podemos generalizar isto, ele só usou este exemplo para este exercício.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Função - UFMG

Mensagempor Kelvin Brayan » Qua Mar 23, 2011 00:36

Obrigado mais uma vez pela força !
Kelvin Brayan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Dom Fev 20, 2011 16:50
Localização: Varginha - MG
Formação Escolar: ENSINO MÉDIO
Área/Curso: Inglês
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}