por Maykids » Dom Mar 20, 2011 13:00
E ai pessoal tudo bom?! entao sou novo aqui no forum e to querendo ficar fera em limites, pq essa faculdade ta me matando com isso de calculo, ahuahhua,
então eu estou fazendo uns exercicios so que sempre da erro -.-, sera que voces poderiam me dar uma luz?!
postarei os primeiros exercicios aqui, e gostaria que voces me indicacem o erro para que eu possa corrigir-los, ;/

Nesse exercicio eu estou fazendo o conjugado, pela equação de cima, e estou caindo aqui:
(Desculpa nao colocar o passo a passo eh que ainda sou leigo quanto ao programa)

entao pessoal dai pra frente eu nao sei o que fazer, pois o resultado esta dando -2.
outro exercicio, esse eu nao tenho ideia de como começar,:

Desde ja agradeço a todos
-
Maykids
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Dom Mar 20, 2011 12:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de computação
- Andamento: cursando
por MarceloFantini » Dom Mar 20, 2011 14:15
No primeiro, coloque

em evidência no numerador e veja o que acontece. Não tentei o segundo, mas procure usar que

e

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Maykids » Dom Mar 20, 2011 16:29
ok vou tentar aqui amigo, desde ja agradeço.
-
Maykids
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Dom Mar 20, 2011 12:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de computação
- Andamento: cursando
por LuizAquino » Dom Mar 20, 2011 17:10
Eu recomendo que você dê uma olhada no tópico abaixo. Eu tenho certeza que ele lhe ajudará muito ao longo do curso de Cálculo.
Aulas de Matemática no YouTubeviewtopic.php?f=120&t=3818
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limites, uma mãozinha aqui
por D_Honda » Qui Jan 07, 2010 23:22
- 2 Respostas
- 4317 Exibições
- Última mensagem por D_Honda

Sex Jan 08, 2010 19:49
Cálculo: Limites, Derivadas e Integrais
-
- Ajuda aqui!
por Liahtz » Sex Ago 07, 2015 17:38
- 1 Respostas
- 10896 Exibições
- Última mensagem por nakagumahissao

Sáb Ago 08, 2015 11:33
Matrizes e Determinantes
-
- ajuda aqui!
por zenildo » Seg Mai 09, 2016 01:18
- 5 Respostas
- 10405 Exibições
- Última mensagem por zenildo

Qui Mai 12, 2016 22:41
Trigonometria
-
- Auxilie aqui!!!!!
por zenildo » Dom Jun 05, 2016 12:13
- 2 Respostas
- 6924 Exibições
- Última mensagem por zenildo

Dom Jun 05, 2016 21:22
Trigonometria
-
- Corrige aqui!!
por zenildo » Dom Jun 05, 2016 21:10
- 2 Respostas
- 2298 Exibições
- Última mensagem por DanielFerreira

Seg Jun 06, 2016 00:22
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.