por Zkz » Seg Set 29, 2008 23:02
Como posso demonstrar que a soma (f +g) e a subtração (f-g) de duas funções ímpares também são ímpares? E a multiplicação (fg) e divisao(f/g) de funções ímpares são funções pares?
Me ajudem =~~
-
Zkz
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Set 13, 2008 19:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia da computação
- Andamento: cursando
por Zkz » Seg Set 29, 2008 23:28
Eu estava aqui pensando e de repente veio uma luz. huahauhauhauah
Se eu fizer:
f(-x) + g(-x) = -f(x) - g(x) = -(f(x)+g(x)) , sendo f e g ímpares
-(f(x)+g(x)) = f(-x) + g(-x)
Portanto, f+g seria uma função ímpar. E então eu procederia da mesma forma na subtração:
f(-x) - g(-x) = -f(x) + g(x) = -(f(x) - g(x)) , sendo f e g ímpares
-(f(x) - g(x)) = f(-x) - g(-x)
Na multiplicação seria:
f(-x).g(-x) = -f(x).-g(x)= f(x).g(x)
f(x).g(x)= f(-x).g(-x), portanto par
Na divisão:
f(-x)\g(-x) = -f(x)\-g(x)= f(x).g(x)
f(x)\g(x)= f(-x)\g(-x), portanto par
=====================================================================================
Eu fiz no improviso. Numa prova de cálculo essa demonstração seria convincente? Me ajuda ai gente, é a minha primeira prova. hauahuahuah :]
-
Zkz
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Set 13, 2008 19:12
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia da computação
- Andamento: cursando
por Molina » Ter Set 30, 2008 00:20
Boa noite, Zkz.
É neste caminho mesmo que se demonstrapar e ímpar.
Basta pegar a definição de função par e a definição
de função ímpar. O resto é puro algebrismo.
Boa sorte na prova!
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Identificar funções pares e ímpares
por vmouc » Sex Mar 11, 2011 00:17
- 6 Respostas
- 5528 Exibições
- Última mensagem por vmouc

Sex Mar 11, 2011 19:33
Funções
-
- Duvidas sobre equações pares e impares
por Ricley » Qui Nov 02, 2017 00:13
- 0 Respostas
- 5135 Exibições
- Última mensagem por Ricley

Qui Nov 02, 2017 00:13
Cálculo: Limites, Derivadas e Integrais
-
- Funções impares- como provar
por Thayna Santos » Seg Mar 16, 2015 12:10
- 1 Respostas
- 1906 Exibições
- Última mensagem por adauto martins

Seg Mar 16, 2015 15:41
Funções
-
- número de divisores ímpares
por thadeu » Dom Nov 22, 2009 23:23
- 0 Respostas
- 1145 Exibições
- Última mensagem por thadeu

Dom Nov 22, 2009 23:23
Álgebra Elementar
-
- Analise combinatória numeros impares
por kariarita » Qui Ago 11, 2011 13:01
- 2 Respostas
- 1986 Exibições
- Última mensagem por kariarita

Qui Ago 11, 2011 15:36
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.