por EulaCarrara » Ter Mar 15, 2011 16:50
Boa tarde!
Função dada:
![f(x,y)=\sqrt[2]{45-3{x}^{2}-5{y}^{2}} f(x,y)=\sqrt[2]{45-3{x}^{2}-5{y}^{2}}](/latexrender/pictures/0a4e1a3cc7aa77d3db28f7a5e62d9496.png)
Considerando Z=k (constante), me deparei com a seguinte equação:
Para k=0,

Para k=1,

...
Eis a dúvida.. as equações acima (das curvas de nível) são de uma circunferência ou de uma elipse (dividindo a equação por 45)?
E como x² e y² estão acompanhados de um número multiplicador, como chegar às curvas de nível?
-
EulaCarrara
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Seg Abr 19, 2010 21:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Zootecnia
- Andamento: cursando
por LuizAquino » Ter Mar 15, 2011 17:44
Temos a função

. Fazendo
z=k, ou seja,
f(x, y)=k, obtemos:

Lembrando que eu só pude fazer a simplificação

, pois temos que

para que o contradomínio da função seja o conjunto dos números reais, e não o dos números complexos. Em outras palavras, eu estou assumindo que não pode aparecer um número negativo dentro da raiz.
Agora, dividindo tudo por

e arrumando a equação:

Note que isso é uma elipse.
Recomendo que dê uma olhada no tópico:
[Dúvida]Gráficos de funções com duas variáveis.viewtopic.php?f=120&t=4069
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por EulaCarrara » Qua Mar 16, 2011 20:54
LuizAquino.. Obrigada!
Até aí entendi...
Mas no caso de se atribuir valores que está me confundindo..
Por exemplo, para
k=0:

Como seria esse desenho da elipse no esboço das curvas de nível?
-
EulaCarrara
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Seg Abr 19, 2010 21:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Zootecnia
- Andamento: cursando
por LuizAquino » Qua Mar 16, 2011 23:14
Há um vasto material na internet ensinando como esboçar o gráfico de uma elipse.
Com uma rápida pesquisa pelo Google, por exemplo, podemos achar a página:
Gráficos de Equaçõeshttp://www.dmm.im.ufrj.br/projeto/precalculo1/sala/conteudo/capitulos/cap31s4.html
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por EulaCarrara » Qui Mar 17, 2011 09:42
Sim... Eu dei uma olhada em vários sites... Só que todos os exemplos que eu encontrei, no denominador sempre tinha números quadrados perfeitos... No caso desse exercício que estou fazendo, "15" não tem raiz exata, por isso achei que teria algo diferente no esboço da curva..
De qualquer forma, obrigada!!

-
EulaCarrara
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Seg Abr 19, 2010 21:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Zootecnia
- Andamento: cursando
por LuizAquino » Qui Mar 17, 2011 10:13
Não há mistério algum. Basta calcular a raiz quadrada aproximada.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por EulaCarrara » Qui Mar 17, 2011 20:03
Ok ok!
O gráfico final foi um "semi" elipslóide invertido..
LuizAquino, muito obrigada *-*
Abraços!
-
EulaCarrara
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Seg Abr 19, 2010 21:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Zootecnia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Dúvida]Gráficos de funções com duas variáveis.
por Santa Lucci » Dom Mar 13, 2011 16:58
- 2 Respostas
- 2203 Exibições
- Última mensagem por Santa Lucci

Dom Mar 13, 2011 21:55
Cálculo: Limites, Derivadas e Integrais
-
- Funções de duas variáveis - Problemas (editado)
por Aprendiz2012 » Qui Set 20, 2012 12:48
- 1 Respostas
- 1350 Exibições
- Última mensagem por MarceloFantini

Qui Set 20, 2012 13:19
Funções
-
- [Limite de Funções de duas variáveis] Demostração
por ARCS » Dom Out 21, 2012 20:15
- 1 Respostas
- 2048 Exibições
- Última mensagem por MarceloFantini

Dom Out 21, 2012 22:04
Funções
-
- Máximos e mínimos de funções de duas variáveis
por Tathiclau » Qua Dez 11, 2013 23:22
- 0 Respostas
- 1001 Exibições
- Última mensagem por Tathiclau

Qua Dez 11, 2013 23:22
Cálculo: Limites, Derivadas e Integrais
-
- [Raiz Cúbica e Raiz Quadrada] Muito difícil achar a solução.
por Leocondeuba » Sáb Mai 11, 2013 19:27
- 2 Respostas
- 7247 Exibições
- Última mensagem por Leocondeuba

Sáb Mai 11, 2013 20:42
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.