• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Alguém sabe calcular essa Integral ?e?.senxdx ?

Alguém sabe calcular essa Integral ?e?.senxdx ?

Mensagempor lucat28 » Qua Mar 16, 2011 12:43

Olá senhores, estou tendo dificuldade em resolver algumas integrais por partes e queria pedir a ajuda de vocês para resolver essa questão:

\int_{}^{}e^xsenxdx


O metódo de integração é por partes mas não consigo achar a resposta certa.
a resposta é:
\frac{1}{2}e^x(senx-cosx)+c

desde já, obrigado!
lucat28
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Mar 16, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Alguém sabe calcular essa Integral ?e?.senxdx ?

Mensagempor Molina » Qua Mar 16, 2011 14:37

Boa tarde.

Nesta questão você terá que fazer duas substituições. Esse macete é bastante usado e provavelmente aparecerá outras questões que você terá que fazer este mesmo caminho.

\int e^xsenxdx

Por partes, temos que:

u=senx \Rightarrow du=cosxdx
dv=e^x dx \Rightarrow v=e^x

\int e^xsenxdx = \int u dv = uv - \int vdu = e^x senx - \int e^x cosx dx

Ou seja, temos que:

\int e^xsenxdx = e^x senx - \int e^x cosx dx

Precisamos usar a integração por partes novamente da integral do lado direito da igualdade:

u=cosx \Rightarrow du=-senxdx
dv=e^x dx \Rightarrow v=e^x

\int e^x cosx dx = \int u dv = uv - \int vdu = e^x cosx + \int e^x senx dx

Ou seja, temos que:

\int e^x cosx dx = e^x cosx + \int e^x senx dx

Substituindo na primeira equação:

\int e^xsenxdx = e^x senx - \int e^x cosx dx

\int e^xsenxdx = e^x senx - e^x cosx - \int e^x senx dx

2\int e^xsenxdx = e^x senx - e^x cosx

\int e^xsenxdx = \frac{1}{2}e^x (senx - cosx) + cte


Qualquere dúvida informe, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Alguém sabe calcular essa Integral ?e?.senxdx ?

Mensagempor lucat28 » Qua Mar 16, 2011 17:35

Valeu Molina!
certinho mesmo, deu pra entender legal
muito obrigado mesmo! :-D
lucat28
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Mar 16, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.