por AnaFurtado » Sáb Mar 20, 2010 17:24
Dados os pontos A(6) e B(-2), determine:
a) os simétricos dos pontos A e B em relação à origem
- Esse eu acredito que entendi, a simetria do número é o seu inverso né? O inverso de A fica -6 e de B fica 2.
b) a abscissa do ponto A', simétrico de A em relação a B
Fiquei em duvida, eu tentei resolver de 2 formas:
- d(A',B) = x(b) - x(a') = -2 - (-6) = 4
ou
- (A',B) = -6 -2 = 8
c) a abscissa do ponto B', simétrico de B em relação a A
Neste, a mesma história da B:
- d(B',A) = X(a) - X(b) = 6-2 = 4
ou
- (B',A) = 2 - 6 = -4
-
AnaFurtado
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Mar 20, 2010 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Seg Mar 22, 2010 23:36
Boa noite, Ana.
AnaFurtado escreveu:a) os simétricos dos pontos A e B em relação à origem
- Esse eu acredito que entendi, a simetria do número é o seu inverso né? O inverso de A fica -6 e de B fica 2.
AnaFurtado escreveu:b) a abscissa do ponto A', simétrico de A em relação a B

AnaFurtado escreveu:c) a abscissa do ponto B', simétrico de B em relação a A


Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por alinter » Qua Mar 16, 2011 11:45
Segundo o Livro
Matemática Compelta - Giovanni e BonjornoRespostas:
a) A(-6); B(2)
b) A'(-10)
c) B'(14)
Resolução:
Simétrico em geometria geralmente quer dizer "A mesma distância, na mesma direção mas em sentido oposto."
A) "- Esse eu acredito que entendi, a simetria do número é o seu inverso né? O inverso de A fica -6 e de B fica 2."
B) A distância de A até B = |- 2 - 6|=> |- 8|=> 8 . Sendo 8 a distância entre os dois pontos(A,B), a distância de 8 apartir de B no sentido negativo(onde o sentido positivo já é 6(A)) será (- 2 - 8)= -10
A' = -10C) A distância de 8 no sentido positivo(onde o sentido negativo já é -2(B)) a partir de A temos: (6 + 8) = 14
B' = 14
-
alinter
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Mar 16, 2011 11:14
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por LuizAquino » Qua Mar 16, 2011 12:02
AnaFurtado escreveu:Dados os pontos A(6) e B(-2), determine:
a) os simétricos dos pontos A e B em relação à origem
- Esse eu acredito que entendi, a simetria do número é o seu inverso né? O inverso de A fica -6 e de B fica 2.
Usualmente, o "simétrico" de um número real
a é o número
-a de tal modo que
a+(-a)=0.
Por outro lado, o "inverso" de um número real
a é o número

de tal modo que

. Note que o 0 não possui inverso.
Exemplo: Dado o número 2, nós temos que:
- Simétrico: -2
- Inverso:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria espacial] Centros de simetria
por rochadapesada » Seg Abr 08, 2013 21:57
- 2 Respostas
- 1977 Exibições
- Última mensagem por rochadapesada

Qua Abr 10, 2013 16:15
Geometria Espacial
-
- [geometria analitica-vetores]alguém poderia resolver?
por amanda_k » Sáb Out 14, 2017 22:28
- 0 Respostas
- 3945 Exibições
- Última mensagem por amanda_k

Sáb Out 14, 2017 22:28
Geometria Analítica
-
- [geometria analitica-vetores]alguém poderia resolver?
por amanda_k » Sáb Out 14, 2017 22:31
- 0 Respostas
- 3984 Exibições
- Última mensagem por amanda_k

Sáb Out 14, 2017 22:31
Geometria Analítica
-
- [geometria analitica-vetores]alguém poderia resolver?
por amanda_k » Sáb Out 14, 2017 22:51
- 0 Respostas
- 4272 Exibições
- Última mensagem por amanda_k

Sáb Out 14, 2017 22:51
Geometria Analítica
-
- [Cálculo] Como resolver essa equação?
por martistapvai » Sex Out 14, 2011 10:18
- 0 Respostas
- 1131 Exibições
- Última mensagem por martistapvai

Sex Out 14, 2011 10:18
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.