• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão prova concurso (Elipse)

Questão prova concurso (Elipse)

Mensagempor fernandocez » Qui Mar 10, 2011 11:41

Caros amigos espero que todos aproveitaram bem o feriado e eu continuo estudando para o concurso do Estado (RJ). Eu acho que não vai dar tempo de eu aprender tudo é muita matéria. Essa questão é sobre elipse, eu já estudei na faculdade mas não lembro de mais nada, procurei num livro e consegui uma fórmula mas me perdi nos cálculos. Se tiver uma forma mais simples vai ajudar. Vamos a questão.

58. O ponto P pertence à curva de equação \frac{{x}^{2}}{45}+\frac{{y}^{2}}{9}=1, cujos focos são F e F'. A maior área possível do triângulo PFF' é:
Resp: 18

Encontrei com ajuda do livro (não sei se tá certo):
a = \sqrt[]{45}
b = 3
a²+b²+c² = 45=9+c²
c²=6

Encontrei uma fórmula:
PF1+PF2=2a

Substituí na fórmula do livro: \sqrt[]{{\left(x-c \right)}^{2}+{\left(y-0 \right)}^{2}}+\sqrt[]{{\left(x+c \right)}^{2}+{\left(y-0 \right)}^{2}}=2a

Comecei a substituir mas me perdi nos cálculos. Existe uma maneira mais fácil? Aguardo e obrigado.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso (Elipse)

Mensagempor Elcioschin » Qui Mar 10, 2011 12:15

fernandocez

Quase tudo que você fez está correto. O único erro foi c² = 36 ----> c = 6

Faltou você calcular a base do triângulo ----> F1F2 = 2c = 12

A altura do triângulo PF1F2 é a ordenada yP do ponto P(xP, yP).

Sem esta informação é impossível calcular a área.

Acontece que ele pediu a MAIOR área possível!!!!

Note então o seguinte:

1) Imagine que o ponto P coincide com o vértice esquerdo do eixo maior 2a. Neste caso yP = 0 e a área é nula.
2) Imagine agora o ponto P se deslocando ao longo da elipse, para a direita.
3) Quando o ponto P coincidir com o vértice direito do eixo maior 2a ----> yP = 0 e a área também é nula.
4) No meio do caminho, portanto vai existir um ponto P para o qual a área é máxima.
5) Este ponto é exatamente o vértice superior do eixo menor 2b ----> yP = b = 3

Smáx = F1F2*b/2 ---> Smáx = 12*3/2 ----> Smáx = 18
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Questão prova concurso (Elipse)

Mensagempor LuizAquino » Qui Mar 10, 2011 12:29

Eu vou apenas ilustrar o que o colega Elcioschin respondeu.

Considere o gráfico abaixo.
elipse.png
elipse.png (5.45 KiB) Exibido 1786 vezes


Como a base do triângulo F'PF é sempre a mesma (e mede 2c), esse triângulo terá a maior área quando ele tiver a maior altura.

Note que essa maior altura ocorre quando h=b.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D