por Rose » Qua Set 17, 2008 16:54
OLá!!
Estou tentando fazer a questão abaixo mas, não estou conseguindo. Para falar bem a verdade, não sei provar. Já fiz alguma coisa, mas ....
Questão:
Prove que os axiomas 1,2 e 3 de Hilbert são interdependentes.
Veja o que eu já fiz:
Resolução:
Seja A , B , C e D, pontos de um modelo. Então termos como retas; {A,B}, {A,C}, {A,D}, { B,C} , { B,D} e {C,D}.
Segundo o primeiro axioma temos que por dois pontos incide uma unica reta. Agora temos que os pares ordenados {A,B}, {A,C}, {A,D}, { B,C} , { B,D} e {C,D}. satisfazem o axioma1 então, então serve. Agora devo ver ser serve para o axioma2...é isto???
-
Rose
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Qui Mai 15, 2008 14:13
- Área/Curso: Estudante
- Andamento: cursando
por Molina » Qua Set 17, 2008 19:44
Boa noite, Rose.
Você deve ter um contra-exemplo que sirva para um axioma e nao sirva para os outros dois axiomas. Se não me engano tem um exemplo que já sai a independencia dos três de cara...
Caso nao tenha conseguido, amanha vejo certinho para voce.
Bom estudo!
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Rose » Qui Set 18, 2008 12:30
OLá!!
Primeiramente obrigada pela sua atenção. Com relação ao contra-exemplo que estou tentando criar. Você me disse que tem um já sai a independencia, certo.
Seria o axioma 2, certo. Pois ele nos garante que: Para cada reta r, existem pelo menos dois pontos distintos que são incidentes á r. Então provo isso usando o modelo:
sejam os pontos A, B, C onde {A,B}, {A,C}, { B,C} , satisfazem o axioma, pois os pontos A,B,C, são distintos e incidem sobre a (A,B).
Realmente está dificil para mim, se puderes me ajudar um pouco mais....
-
Rose
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Qui Mai 15, 2008 14:13
- Área/Curso: Estudante
- Andamento: cursando
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.