• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra: Teoria dos conjuntos2

Álgebra: Teoria dos conjuntos2

Mensagempor Caeros » Sáb Mar 05, 2011 20:06

Seja W = {1,2,3,4}. Considere as seguintes relações em W:
R1 = {(1,1), (1,2)}, R4 = {(1,1), (2,2), (3,3)},
R2 = {(1,1), (2,3), (4,1)}, R5 = W x W
R3 = {(1,3), (2,4)}
Diga se cada uma das relações é ou não: (1) simétrica, (2) anti-simétrica, (3) transitiva, (4) reflexiva.
(1) Em R1, (1,2) ? R1, mas (2,1) \not\ina R1, não é simétrica;
Em R2, (2,3) ? R2, mas (3,2) \not\in a R2, não é simétrica, mesmo para (4,1);
Em R3, (1,3) ? R3, mas (3,1) \not\in a R3, não é simétrica, mesmo para (2,4);
Em R4, (1,1) ? R4, não necessariamente elementos distintos, é simétrica a relação;
Em R5, há todas as possibilidades de relações possíveis e também simétrica.
(2) Segundo o autor da questão apenas R5 não é anti-simétrica, mas se o conjunto é simétrico isso não é pré-requisito para ser anti-simétrico?Porque não?
(3) O autor da questão afirma ser todas transitivas, por quê? Exemplo em R2, se (1,1) ? R2 e (4,1) ? R2 mas (1,4) \not\in a R2. E porque R3 seria transitiva?
(4) Somente R5 é reflexiva, pois a definição deixa claro que cada elemento de W deve ser considerado.
Caeros
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Seg Mai 25, 2009 19:01
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Álgebra: Teoria dos conjuntos2

Mensagempor LuizAquino » Dom Mar 06, 2011 10:22

Caeros escreveu:Diga se cada uma das relações é ou não: (1) simétrica, (2) anti-simétrica, (3) transitiva, (4) reflexiva.

Veja essas definições em:
Relação binária
http://pt.wikipedia.org/wiki/Rela%C3%A7 ... n%C3%A1ria

R5 não é anti-simétrica, pois, por exemplo, temos que:
(1,\,2)\in \textrm{R5}
(2,\,1)\in \textrm{R5}
Entretanto, 1 \neq 2.
Além disso, note que as propriedades de simetria e anti-simetria não são mutuamente excludentes. Isto é, uma relação pode ser ao mesmo tempo simétrica e anti-simétrica. A relação R4 é um exemplo disso.

R2 é transitiva, pois para quaisquer (a,\,b)\in \textrm{R2} e (b,\,c)\in \textrm{R2}, temos que (a,\,c)\in \textrm{R2} . Por exemplo, (4,\,1)\in \textrm{R2}, (1,\,1)\in \textrm{R2} e obviamente (4,\,1)\in \textrm{R2}.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59