• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão prova concurso com radicais

Questão prova concurso com radicais

Mensagempor fernandocez » Qui Mar 03, 2011 17:26

Caro amigos do Forum, essa eu pensei que ia matar fácil mas quebrei a cara.

36. Na igualdade \frac{\sqrt[]{7}+\sqrt[]{5}}{\sqrt[]{7}-\sqrt[]{5}} = a + \sqrt[]{b}, o valor de a² - b é:
Resposta: 1

Eu tentei assim:
\frac{\sqrt[]{7}+\sqrt[]{5}}{\sqrt[]{7}-\sqrt[]{5}} . \frac{\sqrt[]{7}+\sqrt[]{5}}{\sqrt[]{7}-\sqrt[]{5}} = \frac{7+2\sqrt[]{5} \sqrt[]{7}+5}{7-2\sqrt[]{5}\sqrt[]{7}+5} = \frac{12+2\sqrt[]{5}\sqrt[]{7}}{12-2\sqrt[]{5}\sqrt[]{7}}

E ai não consegui desenvolver mais.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso com radicais

Mensagempor LuizAquino » Qui Mar 03, 2011 17:32

Dica

Se o objetivo é racionalizar uma fração do tipo \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}}, com a e b positivos, então você precisa fazer a operação \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}}\cdot \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}} = \frac{(\sqrt{a} + \sqrt{b})^2}{a - b}.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso com radicais

Mensagempor fernandocez » Qui Mar 03, 2011 19:46

Valeu Luiz, eu racionalizei errado. Mas agora travei mas na frente se é que esse é o caminho.

\frac{{\left(\sqrt[]{7}+\sqrt[]{5} \right)}^{2}}{\left(7-5 \right)} = a + \sqrt[]{b} = \frac{{\left(\sqrt[]{7}+\sqrt[]{5} \right)}^{2}}{\left2 \right} = a + \sqrt[]{b} =
= {\left(\sqrt[]{7}+\sqrt[]{5} \right)}^{2}=2\left(a+\sqrt[]{b} \right) = \left(\sqrt[]{7}+\sqrt[]{5} \right) = \sqrt[]{2a+2\sqrt[]{b}}

Daqui não consigo mais.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso com radicais

Mensagempor LuizAquino » Qui Mar 03, 2011 23:53

Desenvolva a expressão \frac{{\left(\sqrt[]{7}+\sqrt[]{5} \right)}^{2}}{\left(7-5 \right)} o máximo possível para encontrar um número que esteja no formato a + \sqrt{b}.

Aqui vai outra dica: lembre-se do produto notável (x+y)^2=x^2+2xy+y^2.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso com radicais

Mensagempor fernandocez » Sex Mar 04, 2011 00:49

Obrigado Luiz, consegui fazer.

\frac{{\left(\sqrt[]{7}\sqrt[]{5} \right)}^{2}}{7-5} = \frac{7+2\sqrt[]{5}\sqrt[]{7}+5}{2} = \frac{12}{2}+\frac{2\sqrt[]{5}\sqrt[]{7}}{2} =

= 6+\sqrt[]{5}\sqrt[]{7} = a+\sqrt[]{b}

a = 6 \Leftrightarrow a² = 36

\sqrt[]{b} = \sqrt[]{5}\sqrt[]{7} \Leftrightarrow {\left(\sqrt[]{b} \right)}^{2}={\left(\sqrt[]{5}\sqrt[]{7} \right)}^{2}
{a}^{2}-b = 36-35=1
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova concurso com radicais

Mensagempor LuizAquino » Sex Mar 04, 2011 09:29

fernandocez escreveu:Obrigado Luiz, consegui fazer.

\frac{{\left(\sqrt[]{7}\sqrt[]{5} \right)}^{2}}{7-5} = \frac{7+2\sqrt[]{5}\sqrt[]{7}+5}{2} = \frac{12}{2}+\frac{2\sqrt[]{5}\sqrt[]{7}}{2} =

= 6+\sqrt[]{5}\sqrt[]{7} = a+\sqrt[]{b}

a = 6 \Leftrightarrow a^2 = 36

\sqrt[]{b} = \sqrt[]{5}\sqrt[]{7} \Leftrightarrow {\left(\sqrt[]{b} \right)}^{2}={\left(\sqrt[]{5}\sqrt[]{7} \right)}^{2}

{a}^{2}-b = 36-35=1


Apenas uma correção: onde há \frac{{\left(\sqrt[]{7}\sqrt[]{5} \right)}^{2}}{7-5} o correto é \frac{{\left(\sqrt[]{7}+\sqrt[]{5} \right)}^{2}}{7-5}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova concurso com radicais

Mensagempor fernandocez » Sex Mar 04, 2011 12:48

Valeu Luiz. Correção feita.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.