por rapharocket » Qui Mar 03, 2011 16:28
Pessoal, estou tentando corrigir um problema que eu tenho ao aplicar MMC. Eu simplesmente não consigo interpretar quando devo aplicar e também não sei (ainda) o modo correto de aplicar o MMC em diferentes situações. Estudando para corrigir esse meu problema, me deparei com a seguinte explicação:

Entendi até o ponto em que se define o MMC, depois, na hora de aplicá-lo à equação eu não entendo. Ainda não compreendi a forma correta com que se atribui ou substitui os valores. Estou tendo grandes dificuldades. Queria que, se possível, alguém com experiência comentasse essa explicação para que eu consiga entender. Até agora não obtive evolução alguma. Desde já, obrigado!
-
rapharocket
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Mar 02, 2011 14:55
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação Fracionária do Segundo Grau Ajuda Urgente
por karenblond » Ter Ago 18, 2015 11:17
- 6 Respostas
- 8156 Exibições
- Última mensagem por nakagumahissao

Ter Ago 18, 2015 18:17
Equações
-
- expressão fracionária
por Andreza » Sex Jan 06, 2012 16:49
- 4 Respostas
- 2203 Exibições
- Última mensagem por DanielFerreira

Sáb Jan 07, 2012 21:17
Álgebra Elementar
-
- porcentagem por mil e fracionaria
por Pento » Dom Mar 03, 2013 16:06
- 3 Respostas
- 2211 Exibições
- Última mensagem por Douglas16

Seg Mar 04, 2013 13:19
Matemática Financeira
-
- [Integral] Fracionária
por klueger » Ter Mar 05, 2013 12:22
- 2 Respostas
- 1856 Exibições
- Última mensagem por klueger

Ter Mar 05, 2013 13:19
Cálculo: Limites, Derivadas e Integrais
-
- Inequação logaritmica com base fracionária
por petras » Qua Out 26, 2016 13:38
- 0 Respostas
- 2444 Exibições
- Última mensagem por petras

Qua Out 26, 2016 13:38
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.