por Guilherme Carvalho » Qui Mar 03, 2011 13:03
Galera me ajuda com essa questão!!!!!!!!!
(UFMG) Sejam
a,
b e
c números reais é positivos, tais que

. Então é correto afirmar que
a) a²= b²+c²
b) b= a+c
c) b²= a²+c²
d) a= b+c
-
Guilherme Carvalho
- Usuário Dedicado

-
- Mensagens: 45
- Registrado em: Qui Mar 03, 2011 12:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
por Elcioschin » Qui Mar 03, 2011 13:27
ab/(b + c) = (b² - bc)/a ----> Colocando b em evidência no 2º membro:
ab/(b + c) = b*(b - c)/a ----> Dividindo por b, já que b > 0:
a/(b + c) = (b - c)/a
a² = (b + c)*(b - c)
a² = b² - c²
b² = a² + c² ----> C
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão da UFMG
por Kelvin Brayan » Sáb Mar 12, 2011 17:19
- 1 Respostas
- 4935 Exibições
- Última mensagem por Rogerio Murcila

Qua Mar 16, 2011 23:42
Matemática Financeira
-
- Questão da UFMG
por Kelvin Brayan » Dom Mar 13, 2011 16:26
- 4 Respostas
- 2503 Exibições
- Última mensagem por Kelvin Brayan

Seg Mar 14, 2011 00:34
Cálculo: Limites, Derivadas e Integrais
-
- Questão UFMG
por Guilherme Carvalho » Qua Mar 16, 2011 16:39
- 5 Respostas
- 2899 Exibições
- Última mensagem por Kelvin Brayan

Ter Mar 22, 2011 00:23
Funções
-
- Questão UFMG
por Kelvin Brayan » Dom Mar 27, 2011 13:36
- 2 Respostas
- 4595 Exibições
- Última mensagem por Kelvin Brayan

Dom Mar 27, 2011 14:15
Funções
-
- Questão UFMG
por Kelvin Brayan » Dom Abr 24, 2011 17:18
- 2 Respostas
- 4449 Exibições
- Última mensagem por Kelvin Brayan

Dom Abr 24, 2011 23:05
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.