• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria

Trigonometria

Mensagempor victoria laurentiz » Qua Mar 02, 2011 20:50

Seja n um número inteiro n\geq1 e x\epsilon(0,\pi/2). Qual das afirmações abaixo é sempre verdadeira?

a) {(1-senx)}^{n}\geq 1-nsenx

b) {(1-senx)}^{n}\geq 1-nsenx para apenas n par

c){(1-senx)}^{n}\leq 1-nsenx

d){(1-senx)}^{n}\leq 1-ncosx

e) N.d.a


Obs: Não consegui achar alguma identidade, então joguei valores nas alternativas, porém fiquei em dúvida entre a alternativa a e a alternativa b.
victoria laurentiz
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Fev 23, 2011 20:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Aeronáutica
Andamento: cursando

Re: Trigonometria

Mensagempor Elcioschin » Qua Mar 02, 2011 21:28

Se vale para qualquer n façamos n = 1 (ímpar) e n = 2 (par)

Se 0 =< T =< pi/2 ----> Façamos T = 30º

n = 1 ----> (1 - sen30)¹ = (1 - 1/2)¹ = 1/2

n = 2 ----> (1 - sen30)² = (1 - 1/2)² = 1/4


Checando alternativa A

1 - 1*sen30º = 1 - 1*(1/2) = 1/2 ---> 1/2 >= 1/2 ----> Verdade

n = 2 ----> 1 - 2*sen30º = 1 - 2*(1/2) = 0 ----> 1/4 >= 0 ----> Verdade

Solução: alternativa A
-
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}